Ausgewählte Filter
Gebiet
Thema
Format
Teilchenbeschleuniger
Im Interview berichtet Joachim Mnich von den physikalischen Durchbrüchen mit Teilchenbeschleunigern und deren Zukunft.
Forschung – gefördert vom BMBF
Im Interview erzählt Reinhard Dörner, wie ihm und seinen Kollegen die Messung der bislang kürzesten Zeitspanne gelang.
Dunkle Materie
Im Interview spricht Manfred Lindner über die möglichen Ursachen eines überraschenden Signals in den Messdaten von XENON1T.
Teilchenphysik
In der 315. Folge erklärt Randolf Pohl, wie man die Bausteine von Atomkernen entdeckte und welche Rätsel das Proton noch heute aufgibt.
Borexino
Forscher wiesen erstmals nahezu masselose Elementarteilchen nach, die in der Sonne als Nebenprodukt einer seltenen Fusionsreaktion entstehen.
Energiegewinnung
In der 314. Folge erklärt Hartmut Zohm, wie Sterne ihre Energie erzeugen und wie man sich diesen Prozess auch auf der Erde zunutze machen möchte.
Licht
Im Interview berichtet Johannes Zirkelbach, wie es ihm und seinen Kollegen gelang, den Schatten von winzigen Goldteilchen abzuschwächen.
Elektromagnetische Strahlung
In der 310. Folge erklärt Dietrich Zawischa, warum die Welt für uns bunt ist – und auf welch vielfältige Weise die Farben entstehen können.
Bose-Einstein-Kondensate
Auf der Internationalen Raumstation haben Wissenschaftler eine Wolke aus Atomen extrem abgekühlt und so einen ganz besonderen Materiezustand erzeugt.
Neutronen
Im Interview berichtet Evgeny Epelbaum, wie er und seine Kollegen die Größe des Neutrons neu bestimmt haben.
Quantengravitation
Im Interview berichtet Sabine Hossenfelder von der Suche nach einer Theorie, die sowohl Effekte der Quantenphysik als auch der Allgemeinen Relativitätstheorie beschreibt.
Elektromagnetische Wellen
In der 305. Folge erklärt Franz Pfeiffer, wie Wilhelm Conrad Röntgen vor 125 Jahren eine „neue Art von Strahlung“ entdeckte und wie man sich deren besonderen Eigenschaften heute zunutze macht.
Astronomen suchen vergeblich nach den Spuren hypothetischer Elementarteilchen, aus denen die Dunkle Materie bestehen könnte.
Quantenmechanik
In der 304. Folge erklärt Wolfgang Schleich, was Erwin Schrödinger mit seinem berühmten Gedankenexperiment illustrieren wollte.
Thermodynamik
Im Interview erklärt Dietmar Block, wie sich die Grundlagen der Thermodynamik anhand eines Modellsystems erforschen lassen.
Atomphysik
Neue Analyse, altes Ergebnis: Zwischen gewöhnlichem Wasserstoff und Antiwasserstoff lässt sich kein Unterschied feststellen.
Quantenfeldtheorie
Wie sich am Beispiel der Quantenphysik die Arbeitsweise von Physikern untersuchen lässt, berichtet Robert Harlander im Interview.
Atomkerne
In der 299. Folge erklärt Helmut Fischer, warum manche Atomkerne zerfallen und was die dabei freigesetzte Strahlung gefährlich macht.
Spezielle Relativitätstheorie
Wie Forscher das Zwillingspaar aus dem bekannten Gedankenexperiment durch ein einziges Quantenobjekt ersetzen, erklärt Sina Loriani im Interview.
KATRIN
Was die ersten Messergebnisse der Neutrinowaage KATRIN für die zukünftige Forschung bedeuten, erklärt Christian Weinheimer im Interview.
Quantennetzwerke
Wie sich mit einem Quanteninternet verschiedene Quantensysteme miteinander vernetzen lassen, erklärt Josef Schupp im Interview.
Tumortherapie
Im Interview erklärt Katia Parodi, wie sich geladene Teilchen in der Krebstherapie einsetzen lassen.
Quantenteleportation
Im Interview mit Welt der Physik erklärt Manuel Erhard, wie sich die quantenmechanischen Eigenschaften eines Teilchens teleportieren lassen.
Suprafestkörper
Wie Forscher einen Suprafestkörper erstmals zweifelsfrei erzeugen konnten, berichtet Tilman Pfau im Interview mit Welt der Physik.
Freie-Elektronen-Laser
Physiker beschossen kugelförmige Moleküle aus Kohlenstoffatomen mit Röntgenlaserblitzen und verfolgten das Geschehen in Echtzeit.
ALICE
Im Interview erzählt Johanna Stachel, wie sich das Experiment ALICE während der Abschaltpause des Large Hadron Collider verändern wird.
Grundkräfte
In der 293. Folge erklärt Peter Schleper, wie die starke Wechselwirkung nicht nur Protonen im Atomkern zusammenhält, sondern auch die Protonen selbst.
In der 292. Folge des Podcasts spricht Ties Behnke über eine Grundkraft, deren Existenz lange verborgen blieb – die aber eine entscheidende Rolle im Universum spielt.
Reibungselektrizität
Wasser spielt eine zentrale Rolle bei einer bislang nicht im Detail verstandenen Form der elektrostatischen Aufladung.
In der 291. Folge unseres Podcasts erklärt Wolfgang Hollik, für welche Phänomene die elektromagnetische Kraft verantwortlich ist.
Im Interview berichtet Christian Spiering, wie er und seine Kollegen nahezu masselose Elementarteilchen nutzen, um Informationen über das Universum zu gewinnen.
In der 290. Folge stellt Georg Weiglein das Konzept der Supersymmetrie vor und erklärt, warum diese Theorie nach fast fünfzig Jahren allmählich in Bedrängnis gerät.
Nicht alle Prozesse in der Elementarteilchenphysik gehorchen fundamentalen Symmetrien. Nun haben Forscher eine weitere Ausnahme entdeckt.
Albert Einstein
In der 288. Folge erklärt Domenico Giulini, wie Albert Einstein mit seiner 1905 vorgestellten Theorie ein gänzlich neues Verständnis von Raum und Zeit schuf.
Mikroskopie
Mithilfe eines neuen Quantenpunktmikroskops lassen sich elektrische Potenziale von Atomen und Molekülen mit extrem hoher Genauigkeit abbilden.
Quantensensor
Im Interview mit Welt der Physik spricht Tracy Northup über einen neuen Quantensensor, mit dem sich Lichtteilchen zerstörungsfrei messen lassen.
Quantenphysik
In der 286. Folge spricht Immanuel Bloch über einen extremen Materiezustand, den Satyendranath Bose und Albert Einstein vor fast hundert Jahren theoretisch vorhersagten.
XENON1T
Mit dem Experiment XENON1T haben Wissenschaftler erstmals den extrem seltenen Zerfall von Xenon-124 nachgewiesen und seine Halbwertszeit bestimmt.
Periodensystem
Im Interview erklärt Sigurd Hofmann, wie das Periodensystem aufgebaut ist und wie sich chemische Elemente künstlich erzeugen lassen.
Bionik
Wissenschaftler bauten die Scheren von Knallkrebsen nach und erzeugten damit ein heißes Plasma aus elektrisch geladenen Teilchen.
Der Vergleich zweier Atomuhren bestätigt eine grundlegende Hypothese der Speziellen Relativitätstheorie.
Kernphysik
Mithilfe eines Supercomputers haben Wissenschaftler berechnet, warum die gemessene Zerfallsrate von Atomkernen nicht den Erwartungen entspricht.
Eine mit Wassertropfen benetzte Oberfläche erscheint je nach Einfallswinkel des Lichts und Blickwinkel eines Betrachters in verschiedenen Farben.
Zeitmessung
In der 278. Folge unseres Podcasts erklärt Fritz Riehle, warum Forscher auf dem gesamten Globus an einer neuen Generation von Atomuhren arbeiten.
Casimir-Effekt
Elementarteilchen, die aus dem Nichts entstehen und sofort wieder verschwinden, können nicht nur Druck ausüben, sondern auch eine Drehbewegung antreiben.
Quantenkommunikation
Mithilfe von Quantenpunkten haben Forscher zuverlässig Paare aus verschränkten Lichtteilchen erzeugt, die sich für die Quantenkommunikation nutzen lassen.
An der im Aufbau befindlichen Extreme Light Infrastructure wollen Physiker schon bald die Struktur von Atomkernen untersuchen – genauer als je zuvor.
Systeme aus vielen Quantenteilchen zeigen ein komplexes Verhalten, doch dabei halten sie sich an bestimmte Regeln. Das bestätigen nun mehrere Experimente.
IceCube
Wissenschaftler erhaschen einen Blick ins Erdinnere – nicht etwa durch geologische Messungen, sondern mithilfe von Daten des Neutrinoobservatoriums IceCube.
Neutrinos
Seit 2007 fahnden Forscher mit dem Experiment Borexino nach Neutrinos aus Fusionsreaktionen in der Sonne. Nun veröffentlichen sie eine umfassende Analyse der Messdaten.
In der 272. Folge unseres Podcasts stellt Reinhard Kienberger einen Effekt vor, der eine Schlüsselrolle in der Geschichte der Physik spielt.
An Bord einer Forschungsrakete haben Physiker eine ultrakalte Atomwolke erzeugt – und damit das erste Bose-Einstein-Kondensat im Weltall.
Je nach Energiezustand wechselt der Atomkern von Zirkonium-98 seine Form, wie Forscher nun in aufwendigen Experimenten herausfanden.
In einem Gedankenexperiment untersuchen Physiker die Grenzen der Quantenmechanik – und stoßen auf einen Widerspruch.
Im Interview berichtet Peter Schleper, warum der CMS-Detektor am Large Hadron Collider die Teilchenspuren künftig noch präziser vermessen kann.
Mithilfe einer Plasmawelle ließen sich Elektronen im Experiment AWAKE auf nur wenigen Metern auf eine Energie von zwei Gigaelektronenvolt beschleunigen.
Higgs-Teilchen
Am Large Hadron Collider gelang es zwei Forscherteams unabhängig voneinander, den Zerfall des Higgs-Teilchens in sogenannte Bottom-Quarks zweifelsfrei nachzuweisen.
Der Ursprung von Neutrinos aus den Tiefen des Weltalls blieb bislang rätselhaft. Forscher machten nun eine mögliche Quelle aus.
Quantentechnologien
In der 263. Folge unseres Podcasts erklärt Friedemann Reinhard, was Quantensensoren sind und was sie besser können als ihre klassischen Gegenstücke.
Neutrinoexperimente
In Karlsruhe geht die Neutrinowaage KATRIN in Betrieb. Physiker wollen damit herausfinden, wie viel eines der häufigsten Elementarteilchen im Universum wiegt.
Im Teilchenbeschleuniger SuperKEKB in Japan prallen Elektronen und deren Antiteilchen aufeinander, um Hinweise auf eine Physik jenseits des Standardmodells zu liefern.
Mithilfe von mehr als 100 000 Freiwilligen bestätigen Wissenschaftler, dass die Quantenphysik gegen eine Grundannahme der klassischen Physik verstößt.
Lichtquellen
In der 260. Folge unseres Podcast erklärt Markus Drescher, wie sich Laserlicht erzeugen lässt und welche Rolle es in unserem Alltag und in der Grundlagenforschung spielt.
Quantensimulatoren
Wissenschaftlern ist es gelungen, die quantenmechanischen Eigenschaften einer Atomwolke auch nach einer starken Expansion zu erhalten.
Kernuhren
Der Atomkern des Elements Thorium-229 soll zukünftig als Taktgeber für einen neuartigen Typ von Atomuhren dienen.
Chemische Synthese
Forschern ist es gelungen, zwei einzelne Atome mithilfe von Laserlicht kontrolliert miteinander reagieren zu lassen.
Im Teilchenbeschleuniger LHC sollen künftig noch mehr Protonen pro Sekunde aufeinanderprallen. Um die hohen Kollisionsraten zu bewältigen, müssen auch die Detektoren – wie etwa ATLAS – aufgerüstet werden.
In der 255. Folge unseres Podcasts spricht Hannah Petersen über einen exotischen Materiezustand, der nur unter extremen Bedingungen auftritt – so wie sie etwa Bruchteile von Sekunden nach dem Urknall herrschten.
Physikalische Größen
In der 250. Folge unseres Podcasts erklärt Claus Kiefer von der Universität Köln, wie sich der Zeitbegriff im Lauf der Zeit wandelte – und warum man heute glaubt, dass Zeit auf der fundamentalen Ebene nicht existiert.
Lichtstreuung
Experimente zeigen, dass die mittlere Weglänge von Lichtteilchen in klaren und trüben Flüssigkeiten überraschenderweise immer gleich ist.
In der 248. Folge spricht Robert Moshammer vom Max-Planck-Institut für Kernphysik in Heidelberg über einen quantenmechanischen Effekt, der subatomare Teilchen durch eigentlich unüberwindbare Barrieren „tunneln“ lässt.
Teilchen
Die Fusion von exotischen Teilchen aus schweren Quarks könnte theoretisch bis zu zehnmal mehr Energie liefern als die Fusion von Wasserstoffkernen.
Elektron
Physiker beobachteten mithilfe kurzer Laserpulse eine verblüffende Dynamik von Photoelektronen in Halbleitern.
European XFEL
Am 1. September wurde der European XFEL – der weltweit leistungsfähigste Röntgenlaser – offiziell eröffnet.
Neutrinoexperiment
Erstmals konnten Wissenschaftler eine bereits vor Jahrzehnten vorhergesagte Wechselwirkung von Neutrinos mit Atomkernen nachweisen.
Nach dem Zusammenstoß von Goldionen in einem Teilchenbeschleuniger entstand ein Quark-Gluon-Plasma, das unvorstellbar rasant rotierte.
Forscher legen einen neuen Wert für die Protonenmasse vor, der genauer ist als der bisherige Literaturwert – und von diesem abweicht.
Wissenschaftler untersuchten die atomare Struktur eines intakten Viruspartikels erstmals mit einem Röntgenlaser.
Durch ultraschnelle Lichtblitze haben Forscher die quantenmechanischen Eigenschaften eines freien Elektrons vollständig bestimmt.
Die starke Ionisation eines Moleküls mit einem Röntgenlaser liefert wichtige Erkenntnisse für die Analyse von Biomolekülen.
Physiker haben mithilfe eines Rasterkraftmikroskops erstmals ermittelt, wie stark die Wasserstoffbrückenbindung zwischen zwei Molekülen ist.
Der größte Röntgenlaser der Welt erzeugt sein erstes Laserlicht – im Herbst soll der wissenschaftliche Experimentierbetrieb beginnen.
Forscher beobachten durch Zusammenstöße von Protonen im Experiment ALICE die kleinsten Bausteine der Materie.
Nur in extrem seltenen Fällen können Lichtteilchen miteinander kollidieren. Wissenschaftler haben dieses Phänomen kürzlich erstmals beobachtet.
Verschränkung
Forscher erzeugten drei verschränkte Photonen und untersuchten deren Eigenschaften, die eine wichtige Rolle in quantenmechanischen Anwendungen spielen.
GERDA
Auch die zweite Phase des GERDA-Experiments liefert keine Hinweise darauf, dass Neutrinos ihre eigenen Antiteilchen sind.
In Experimenten konnten Physiker zeigen, dass manche Atomkerne spontan ihre Form ändern. Im Podcast erklärt Norbert Pietralla, wie das möglich ist.
Wissenschaftler erzeugen erstmals einen Zeitkristall, der wie ein normaler Kristall periodisch angeordnet ist – nur nicht im Raum, sondern in der Zeit.
Maßgeschneiderte Linse korrigiert winzige Fehler in der bisher verwendeten Optik und bündelt den Strahl eines Röntgenlasers so stärker als zuvor.
Forscher konnten Quantenfluktuationen beeinflussen und anschließend winzige Regionen in der Raumzeit nachweisen, die leerer sind als das absolute Nichts.
Teilchenphysiker Peter Mättig über den auffälligen Ausreißer in den Messdaten des LHC, hinter dem kein neues Teilchen steckt, sondern statistischer Zufall.
Antimaterie
Neue Messungen bestätigen die Symmetrie zwischen Materie und Antimaterie mit hoher Genauigkeit.
Forscher haben eine neuartige Glasfaser entwickelt – sie leitet Licht allein aufgrund ihrer Verdrehung und bringt es so auf spiralförmige Bahnen.
Mit ultrakalten Atomen erzeugen Wissenschaftler „Quantentröpfchen“, die neue Einblicke in die Natur und das Verhalten ultrakalter Atome eröffnen.
Neues Rastertunnelmikroskop filmt extrem schnelle Bewegungen eines Moleküls auf atomarer Ebene.
Was in einem Atom passiert, wenn eines der Elektronen herausgelöst wird, haben Physiker nun mit bisher unerreichter Genauigkeit untersucht.
Neue Messungen bestätigen die Symmetrie zwischen Materie und Antimaterie: Proton- und Antiprotonmasse stimmen innerhalb der Messgenauigkeit überein.
Forscher berechneten die Masse des Axions – eines Teilchens, das bisher nur in der Theorie existiert und als Kandidat für Dunkle Materie gehandelt wird.
Komplexe Magnetstrukturen bringen Elektronenpakete auf Schlängelkurs, um intensive Röntgenpulse mit verschiedenen Energien zu erzeugen.
Elementarteilchen
Als präziseste Waage der Welt soll das Experiment KATRIN die genaue Masse der häufigsten Elementarteilchen im Universum bestimmen.
Quelle: https://www.weltderphysik.de/service/suche/
Auch wir setzen Cookies ein, um unsere Website zu optimieren. Die Daten werden ausschließlich anonymisiert erfasst und nicht für Werbezwecke genutzt. Weitere Informationen und Einstellmöglichkeiten finden Sie in unserer Datenschutzerklärung.