Ausgewählte Filter
Gebiet
Thema
Format
Äquivalenzprinzip
Im Interview berichtet Claus Lämmerzahl, wie die Satellitenmission MICROSCOPE ein grundlegendes Prinzip der Physik erneut bestätigte.
Regenerative Energien
In der 342. Folge erklärt Inga Moeck, woher die Wärme im Erdinneren kommt und mit welchen Verfahren sie sich technisch nutzen lässt.
IceCube
Im Interview berichtet Elisa Resconi, wie sich erstmals eine Neutrinoquelle in unserer direkten kosmischen Nachbarschaft aufspüren ließ.
Photovoltaik
Eine neue Methode, um Perowskitschichten in Solarzellen zu kombinieren, erhöht deren Wirkungsgrad und Haltbarkeit.
Erneuerbare Energien
In der 337. Folge erklärt Christiane Becker, wie Solarzellen funktionieren und wie sich das Sonnenlicht damit möglichst effizient in elektrischen Strom umwandeln lässt.
Quantencomputer
Im Interview mit Welt der Physik erzählt Markus Ternes, wie er und seine Kollegen zwei Atome beim Informationsaustausch beobachtet haben.
Eine zusätzliche Schutzschicht ermöglicht es erstmals, mit Perowskitsolarzellen länger als fünf Jahre Solarstrom ohne große Verluste zu erzeugen.
Teilchenbeschleuniger
Der LHC ist der derzeit leistungsfähigste Beschleuniger der Welt. Hier bringen Physiker Teilchen bei bisher unerreichten Energien zum Zusammenstoß.
Mithilfe einer neuen elektrostatischen Reinigungsmethode lassen sich Solarmodule von abschattenden Staubschichten befreien.
Technik
In der 331. Folge erklärt Michael Sterner, wie sich Energie speichern lässt und warum das für eine klimaneutrale Strom- und Wärmeversorgung wichtig ist.
Im Interview berichtet Andreas Hoecker von den Vorbereitungen für die dritte Betriebsphase des Large Hadron Collider.
Neue Analysen zeigen, wie viel leiser Rotorblätter mit speziell aufgefächerten Hinterkanten sind.
Relativitätstheorie
An rotierenden Neutronensternen ließen sich mehrere Phänomene beobachten, die von der Allgemeinen Relativitätstheorie bislang nur theoretisch vorhergesagt wurden.
Physikalische Größen
In der 327. Folge berichtet Robert Harlander, was Forscher bisher über das Phänomen „Masse” herausgefunden haben – von Newton über Einstein bis zum Fund des Higgs-Teilchens.
Windenergie
Simulationen zeigen, dass bodennahe Windbrecher die Stromerzeugung in Windparks steigern können.
Elementarteilchen
Eine der großen Fragen der Teilchenphysik war lange Zeit, woher die Elementarteilchen ihre Masse bekommen. Mit dem Higgs-Teilchen lässt sich dieses Rätsel lösen.
Ein neues Minikraftwerk erzeugt mithilfe der Wassermoleküle in feuchter Luft hohe elektrische Spannungen – und eignet sich damit als mobile Stromquelle.
Ein Forscher präsentiert nun einen neuen theoretischer Ansatz für eine Art „Warp-Antrieb“.
In der 316. Folge erklärt Andreas Reuter, wie Windkraftanlagen funktionieren und welche Herausforderungen ihr Bau und Betrieb mit sich bringen.
Erderwärmung
Die globale Erwärmung hat auch Folgen für das künftige Potenzial von Wind-, Solar- und Wasserkraftwerken, wobei es regional starke Unterschiede geben dürfte.
Im Interview berichtet Joachim Mnich von den physikalischen Durchbrüchen mit Teilchenbeschleunigern und deren Zukunft.
Borexino
Forscher wiesen erstmals nahezu masselose Elementarteilchen nach, die in der Sonne als Nebenprodukt einer seltenen Fusionsreaktion entstehen.
Quantengravitation
Im Interview stellt Martin Bojowald ein neues Modell von einer fundamentalen Zeit vor, die den Takt im gesamten Universum angibt.
Beobachtende Astronomie
Im Interview berichtet Christian Straubmeier, wie das Instrument GRAVITY am Very Large Telescope seit einigen Jahren detailreiche Einblicke ins Weltall ermöglicht.
Eine neue organische Solarzelle lässt fast die Hälfte des Sonnenlichts hindurch, während sie gut zehn Prozent des einfallenden Lichts in elektrischen Strom umwandelt.
Bose-Einstein-Kondensate
Auf der Internationalen Raumstation haben Wissenschaftler eine Wolke aus Atomen extrem abgekühlt und so einen ganz besonderen Materiezustand erzeugt.
Solarenergie
In der 307. Folge erklärt Ulrich Kleinekathöfer, wie Pflanzen, Algen und manche Bakterien einfallendes Licht in chemische Energie umwandeln.
Im Interview berichtet Sabine Hossenfelder von der Suche nach einer Theorie, die sowohl Effekte der Quantenphysik als auch der Allgemeinen Relativitätstheorie beschreibt.
Forscher haben neue supraleitende Qubits entwickelt, die schon bei deutlich höheren Temperaturen funktionieren und damit enorme Kosten einsparen.
Energiegewinnung
Winzige Nanofäden aus Proteinmolekülen erzeugen allein durch die Luftfeuchtigkeit genügend Energie, um Sensoren oder Leuchtdioden zu betreiben.
Allgemeine Relativitätstheorie
Jahrzehntelange Beobachtungen bestätigen einen von der Allgemeinen Relativitätstheorie vorhergesagten Effekt nun auch in einem fernen Doppelsternsystem.
Kosmologie
In der 300. Folge unseres Podcasts erklärt Jean-Luc Lehners, wie Physiker den Beginn des Universums erforschen.
Spezielle Relativitätstheorie
Wie Forscher das Zwillingspaar aus dem bekannten Gedankenexperiment durch ein einziges Quantenobjekt ersetzen, erklärt Sina Loriani im Interview.
KATRIN
Was die ersten Messergebnisse der Neutrinowaage KATRIN für die zukünftige Forschung bedeuten, erklärt Christian Weinheimer im Interview.
Quantennetzwerke
Wie sich mit einem Quanteninternet verschiedene Quantensysteme miteinander vernetzen lassen, erklärt Josef Schupp im Interview.
Quantenteleportation
Im Interview mit Welt der Physik erklärt Manuel Erhard, wie sich die quantenmechanischen Eigenschaften eines Teilchens teleportieren lassen.
Grundkräfte
In der 294. Folge des Podcasts erklärt Angnis Schmidt-May, warum die Gravitation vielleicht die mysteriöseste unter den vier fundamentalen Kräften der Natur ist.
Eine neue Solarzelle ist zehnfach dünner als herkömmliche Dünnschichtzellen – erreicht dank eines raffinierten Tricks aber dennoch einen hohen Wirkungsgrad.
Teilchenphysik
Im Interview berichtet Christian Spiering, wie er und seine Kollegen nahezu masselose Elementarteilchen nutzen, um Informationen über das Universum zu gewinnen.
In der 290. Folge stellt Georg Weiglein das Konzept der Supersymmetrie vor und erklärt, warum diese Theorie nach fast fünfzig Jahren allmählich in Bedrängnis gerät.
Nicht alle Prozesse in der Elementarteilchenphysik gehorchen fundamentalen Symmetrien. Nun haben Forscher eine weitere Ausnahme entdeckt.
Aerodynamik
Einzelne Windräder liefern am meisten Strom, wenn der Wind frontal auf den Rotor trifft. Doch für größere Windparks gilt diese einfache Regel nicht mehr.
Albert Einstein
In der 288. Folge erklärt Domenico Giulini, wie Albert Einstein mit seiner 1905 vorgestellten Theorie ein gänzlich neues Verständnis von Raum und Zeit schuf.
In den Morgenstunden sind Perowskitsolarzellen besonders effizient. Das zeigt ein neues Testverfahren unter realitätsnahen Umweltbedingungen.
Quantensensor
Im Interview mit Welt der Physik spricht Tracy Northup über einen neuen Quantensensor, mit dem sich Lichtteilchen zerstörungsfrei messen lassen.
Zeitmessung
In der 278. Folge unseres Podcasts erklärt Fritz Riehle, warum Forscher auf dem gesamten Globus an einer neuen Generation von Atomuhren arbeiten.
Das Potenzial von Solarzellen ist noch lange nicht ausgeschöpft – verbesserte Bauweisen und neue Materialien könnten den Wirkungsgrad deutlich erhöhen.
Quantenkommunikation
Mithilfe von Quantenpunkten haben Forscher zuverlässig Paare aus verschränkten Lichtteilchen erzeugt, die sich für die Quantenkommunikation nutzen lassen.
Wissenschaftler erhaschen einen Blick ins Erdinnere – nicht etwa durch geologische Messungen, sondern mithilfe von Daten des Neutrinoobservatoriums IceCube.
Internationales Einheitensystem
Bisher legt ein Metallzylinder fest, wie schwer ein Kilogramm ist. In der 273. Folge des Podcasts erklärt Frank Härtig, wie diese Einheit künftig über eine Naturkonstante definiert werden soll.
Neutrinos
Seit 2007 fahnden Forscher mit dem Experiment Borexino nach Neutrinos aus Fusionsreaktionen in der Sonne. Nun veröffentlichen sie eine umfassende Analyse der Messdaten.
An Bord einer Forschungsrakete haben Physiker eine ultrakalte Atomwolke erzeugt – und damit das erste Bose-Einstein-Kondensat im Weltall.
Higgs-Teilchen
Am Large Hadron Collider gelang es zwei Forscherteams unabhängig voneinander, den Zerfall des Higgs-Teilchens in sogenannte Bottom-Quarks zweifelsfrei nachzuweisen.
Durch die geschickte Wahl von Materialien steigern Wissenschaftler den Wirkungsgrad einer Tandemzelle auf 17,3 Prozent.
Wärmekraftmaschinen
Ein neu entwickelter Nanogenerator wandelt Wärme ganz ohne mechanische Bauteile direkt in Strom um.
Der Ursprung von Neutrinos aus den Tiefen des Weltalls blieb bislang rätselhaft. Forscher machten nun eine mögliche Quelle aus.
Gravitation
Ein System aus einem Neutronenstern und zwei Weißen Zwergen verhält sich genau wie von der Allgemeinen Relativitätstheorie vorhergesagt.
Ein neuer Prototyp verringert den Verlust von Ladungsträgern und zeigt gleichzeitig über viele Stunden einen hohen Wirkungsgrad.
Quantentechnologien
In der 263. Folge unseres Podcasts erklärt Friedemann Reinhard, was Quantensensoren sind und was sie besser können als ihre klassischen Gegenstücke.
Ein Frequenzvergleich von zwölf Atomuhren bestätigt, dass ihr Takt unabhängig von ihrer Position ist – wie von Albert Einsteins Theorie vorhergesagt.
Quantensimulatoren
Wissenschaftlern ist es gelungen, die quantenmechanischen Eigenschaften einer Atomwolke auch nach einer starken Expansion zu erhalten.
Chemische Synthese
Forschern ist es gelungen, zwei einzelne Atome mithilfe von Laserlicht kontrolliert miteinander reagieren zu lassen.
In der 257. Folge unseres Podcasts spricht Christof Wetterich über die historische Entwicklung einer physikalischen Konstante, die Einstein einst in die Gleichungen der Allgemeinen Relativitätstheorie einführte.
Ein neuartiges Zwei-Qubit-System auf der Basis von Quantenpunkten ließ sich mit relativ geringem Aufwand fertigen, programmieren und auslesen.
Forschung – gefördert vom BMBF
Um einen extrem seltenen Teilchenzerfall aufzuspüren, wollen Wissenschaftler das Experiment GERDA unter dem Gran-Sasso-Massiv in Italien erweitern.
In der 250. Folge unseres Podcasts erklärt Claus Kiefer von der Universität Köln, wie sich der Zeitbegriff im Lauf der Zeit wandelte – und warum man heute glaubt, dass Zeit auf der fundamentalen Ebene nicht existiert.
Erde
Nach dreijähriger Stagnation steigen die globalen Emissionen von Kohlendioxid im laufenden Jahr 2017 wieder an, da mehr fossile Brennstoffe verfeuert werden.
In einem deutsch-schwedischen Projekt untersuchen Wissenschaftler, wie sich der Wirkungsgrad einer neuen Klasse von Solarzellen steigern lässt.
Universum
Astronomen beobachten erstmals sowohl mithilfe elektromagnetischer Strahlung als auch mithilfe von Gravitationswellen, wie zwei Neutronensterne kollidieren.
Physiker stellen einen neuen Rekord für die Präzision einer Atomuhr auf, indem sie Strontiumatome in ein dreidimensionales Lichtgitter einsperren.
Preise
Der Physiknobelpreis 2017 wird für die erste direkte Beobachtung von Gravitationswellen verliehen.
Wissenschaftler berichten über das enorme Potenzial und die Realisierbarkeit einer bislang ungenutzten Stromquelle – der Verdunstung von Wasser.
Quantensimulator
Mit ultrakalten Atomen – gefangen in optischen Gittern – können Physiker komplexe Quantensysteme simulieren.
Die Natur liefert unendlich viel Primärenergie in Form von Sonnenlicht, Winden, Wellenbewegung, Wasserkraft, Erdwärme und in nachwachsender Biomasse – eine Herausforderung an Physik und Technik, diese Energie möglichst effizient und kostengünstig…
Welche Aussichten gibt es die Energieerzeugung aus erneuerbaren Quellen in der Zukunft zu steigern? Die Möglichkeiten sind unterschiedlich, das derzeit größte Ausbaupotenzial scheinen in Deutschland Windkraft und Photovoltaik zu besitzen.
Neutrinoexperiment
Erstmals konnten Wissenschaftler eine bereits vor Jahrzehnten vorhergesagte Wechselwirkung von Neutrinos mit Atomkernen nachweisen.
Teilchen
Forscher legen einen neuen Wert für die Protonenmasse vor, der genauer ist als der bisherige Literaturwert – und von diesem abweicht.
Satellit
Wissenschaftlern ist die technisch anspruchsvolle Aufgabe geglückt, via Satellit sogenannte Quantenschlüssel zwischen zwei Bodenstationen auszutauschen.
Ionenfalle
Physiker haben erstmals die quantenmechanischen Zustände von geladenen Molekülen kontrolliert verändert und gemessen.
Verschränkung
Forscher erzeugten drei verschränkte Photonen und untersuchten deren Eigenschaften, die eine wichtige Rolle in quantenmechanischen Anwendungen spielen.
GERDA
Auch die zweite Phase des GERDA-Experiments liefert keine Hinweise darauf, dass Neutrinos ihre eigenen Antiteilchen sind.
Wissenschaftler erzeugen erstmals einen Zeitkristall, der wie ein normaler Kristall periodisch angeordnet ist – nur nicht im Raum, sondern in der Zeit.
Neue Physik, Dunkle Materie, Higgs-Teilchen – das alles soll der Teilchendetektor ATLAS entdecken. Dafür will ihn der neue Sprecher Karl Jakobs fit machen.
Wissenschaftler stellen einen neuen Bauplan für einen universellen Quantencomputer vor, der sich beliebig skalieren ließe.
Neutrino
Mit dem Teilchendetektor IceCube konnten Forscher zeigen, dass eine bisher nur hypothetische Art von Neutrinos wohl nicht existiert.
Forscher haben einen flexibel programmierbaren Quantencomputer mit fünf Ionen entwickelt und getestet.
Astronomen wollen gewissermaßen den Schatten eines Schwarzen Lochs beobachten – das wäre der erste direkte Nachweis, dass diese Objekte existieren.
Einige Monate nach der ersten Entdeckung von Gravitationswellen kann die Gravitationswellenastronomie schon einen zweiten Erfolg vorweisen.
Forschern gelingt es, 219 Berylliumionen mit magnetischen Feldern einzufangen und quantenmechanisch miteinander zu koppeln.
Quantencomputer nutzen Quanteneffekte, um bestimmte Probleme effizienter zu lösen. Dabei unterscheiden sie sich grundlegend von herkömmlichen Rechnern.
Wissenschaftler wollen mit dem Experiment KATRIN die häufigsten Elementarteilchen im Universum vermessen.
Der Physik-Nobelpreis 2015 wurde die Entdeckung der Neutrinooszillationen geehrt. Es ist bereits der vierte Nobelpreis für die Neutrinophysik in 30 Jahren.
In vielen Alltagsgegenständen machen wir uns Quanteneffekte bereits zunutze. Nun versuchen Physiker, diese gezielt zu steuern und so ganz neue Anwendungen zu ermöglichen.
Mit IceCube lassen sich nicht nur hochenergetische Neutrinos aus dem Weltall aufspüren, auch über die Elementarteilchen selbst liefert der Detektor wertvolle Erkenntnisse.
Mit dem Experiment IceCube weisen Forscher nahezu masselose Elementarteilchen aus der Milchstraße und anderen Galaxien nach.
LHC-Experiment
Mit dem Fund des Higgs-Bosons sind nun alle Teilchen im Standardmodell der Teilchenphysik nachgewiesen. Es gilt also, neue Physik zu entdecken.
Weltweit streben Physiker nach immer genaueren Uhren – ob für die Navigation per Satellit oder die Überprüfung fundamentaler Naturgesetze.
Vom 3. bis 9. Juli findet in Valencia das größte internationale Treffen der Hochenergiephysik statt. Norbert Wermes von der Universität Bonn berichtet von dort über den Status des Higgs-Teilchens und die zukünftige Forschung am LHC.
Vor gut fünfzig Jahren schlugen Robert Brout, François Englert und Peter Higgs ein völlig neues Prinzip vor, um die Masse von Elementarteilchen zu erklären.
Am LHC haben Physiker den direkten Zerfall des Higgs-Teilchens in zwei Fermionen nachgewiesen – im Einklang mit dem Standardmodell der Teilchenphysik.
Quelle: https://www.weltderphysik.de/service/suche/
Auf unserer Website nutzen wir ausschließlich technisch notwendige Cookies. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.