Ausgewählte Filter
Gebiet
Thema
Format
Materie
Bei der Spin-Elektronik sollen nicht nur die elektrische Ladung, sondern auch die Eigenrotation (Spin) von Elektronen und Atomkernen zur Verarbeitung und Kodierung von Informationen verwendet werden.
Technik
Frank Jenko simuliert Plasmaturbulenzen, die im „Brennraum“ eines Fusionsreaktors auftreten. Auf diese Weise will er die „Lecks“ aufspüren, über die das 100 Millionen Grad heiße Gas seine Energie verliert.
Wie läßt sich das Plasma stabil einschließen, gleichzeitig aber an seinem Rand ein kontrollierter Abtransport der ungeheuren Wärmemengen erreichen?
Wie sieht der Magnetspin eigentlich aus? Mit speziellen Rastertunnelmikroskopen werfen Hamburger Physiker einen Blick auf den Magnetismus auf atomarer Ebene.
Der sogenannte Magneto-Resistance-Effekt (TMR-Effekt) kann möglicherweise zur Herstellung neuartiger Speicherchips führen.
Bilder, die Jülicher Wissenschaftler aufgenommen haben, eröffnen faszinierende Einblicke in den Mikrokosmos, etwa wie Atome auf Halbleiteroberflächen Inseln bilden.
Durch eine Strahlungskühlung wird verhindert, dass das 10 Millionen Grad heisse Plasma die Wände des Fusionsreaktors beschädigt.
Bleiben einzelne Plätze in einem Kristall leer oder nehmen Fremdatome die Plätze ein, so verändern sich die elektrischen Eigenschaften eines Halbleiters.
Die Wechselwirkungen zwischen Fusionsplasma und den Wänden des Reaktors können sowohl die Wände als auch das Plasma zerstören.
Mit ausgeklügelten mathematischen und technischen Methoden gelingt es, immer schärfere Einblicke in Kristallstrukturen zu erhalten.
Mit Rastertunnelmikroskopen können Korrosionsprozesse auf molekularer Ebene beobachtet werden. Chemische und physikalische Prozesse an den Oberflächen von Metallen und Halbleitern lassen sich damit genau untersuchen und darauf für neue Anwendungen…
Zwei Reaktordesigns sind für Fusionskraftwerke in Entwicklung. Wie unterscheiden sich die Funktionsprinzipien von Tokamak und Stellerator?
Unterschiedliche Methoden der Diagnostik helfen die Vorgänge im Fusionsplasma zu verstehen.
Erde
Die Beobachtung und die Vermessung der Erde aus dem Weltraum nutzt hochgenaue Sensoren, superschnelle Rechner und effektive numerische Mathematik. Damit kann man heute die Prozesse im Erdinneren selbst in feinen Details studieren.
Die Wissenschaft von den Erdbeben – die Seismologie – war Ende des vergangenen Jahrhunderts noch eine kleine, beobachtende Fachrichtung. Mittlerweile hat sie sich zu einem internationalen Großunternehmen entwickelt.
Verlauf und Stärke des Magnetfeldes an der Erdoberfläche und im Außenraum der Erde verraten, wie der „Erddynamo“ funktioniert, der das beobachtete Magnetfeld erzeugt.
Symmetrie
Fraktal heißen Objekte, bei denen das Ganze seinen Bestandteilen ähnelt: Darunter fallen Bäume und Kristalle, aber auch Ansammlungen von Galaxienhaufen.
Ein ferromagnetisches Metall ist in Bereiche unterschiedlicher Magnetisierungsrichtung aufgeteilt. Im Nanobereich herrscht eine kohärente Spinstruktur vor.
In eindimensionalen Elektronensystemen ist die Bewegung der Elektronen auf eine Raumrichtung eingeschränkt. Bei tiefen Temperaturen verlieren die Elektronen ihre „Identität“.
Chaos und Ordnung
Das Verhalten von deterministischen chaotischen Systemen ist unvorhersagbar, obwohl es durch bekannte Bewegungsabläufe vorherbestimmt ist.
Selbstorganisation und Strukturbildung sind Eigenschaften von Vielteilchensystemen. Die dabei waltenden Ordnungsprinzipien sind erst teilweise verstanden.
Magnetische Materialien sind technisch seit langem von großer Bedeutung. Dabei müssen die magnetischen Eigenschaften je nach Anwendung unterschiedlich sein.
Der Magnetismus begegnet uns in vielen Naturphänomenen und technischen Anwendungen, angefangen vom Erdmagnetfeld bis hin zu den Hochtemperatursupraleitern.
Die Quantenmechanik eröffnet neue, faszinierende Perspektiven für die Kommunikation und die Informationsverarbeitung.
Viele interessante Eigenschaften von Festkörpern tauchen erst dann auf, wenn die ideale Kristallstruktur mit geringen Mengen bestimmter Fremdsubstanzen gestört wird.
Teilchen
Eine der erfolgreichsten Methoden, um einzelne Teilchen zu manipulieren, beruht auf der Kombination von elektromagnetischen Fallen und Laserkühlung.
Nano-Optik umfasst optische Methoden, mit denen sich einzelne Nanoteilchen und Nanostrukturen herstellen, untersuchen und manipulieren lassen.
Leben
Bedeutsame Anwendungen oft aus der Grundlagen-Forschung und derem wissenschaftlichen Umfeld. So auch die mittlerweile sehr erfolgreiche Tumortherapie.
Mit dem Auge sind die winzigen Partikel, nach denen die Teilchenphysik sucht, nicht sichtbar. Erst die haushohen Detektoren erlauben es, das Unsichtbare sichtbar zu machen.
Droht ein Fahrzeug bei zu schneller Kurvenfahrt auszubrechen, dann kann es durch ESP in der Frühphase durch gezieltes Abbremsen einzelner Räder wieder stabilisiert werden.
Die Quantentheorie behauptet, dass der Zustand mikroskopischer Objekte vor einer Messung nicht nur nicht bekannt, sondern völlig unbestimmt ist.
Die Nanotechnologie befasst sich mit Details, die nur Millionstel Millimeter groß sind. Rastersondenmikroskope gewähren uns einen Einblick in diese Welt.
Quelle: https://www.weltderphysik.de/service/suche/
Auf unserer Website nutzen wir ausschließlich technisch notwendige Cookies. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.