Ausgewählte Filter
Gebiet
Thema
Format
Technik
Licht leitet gigantische Datenmengen rasant durch Glasfaserkabel rund um den Globus. Die Schnelligkeit der Photonen wollen Forscher auch für den Bau von Photonik-Chips nutzen, die digitale Daten schneller verarbeiten als elektronische Schaltkreise.
Winzig, aber kraftvoll ist ein Molekül, das sich mit Hilfe von Licht und Wärme antreiben lässt und Objekte dreht, die bis 10.000-mal größer sind. Niederländische Forscher brachten diesen Nano-Motor in mehreren Schritten zu kompletten Drehungen.
Weltweit lassen Forscher die Muskeln spielen. Jedoch rein künstliche. Einen weiteren Fortschritt erzielten nun amerikanische Wissenschaftler. Sie entwickelten auf der Basis von Nanoröhrchen aus Kohlenstoff und Formgedächtnismetallen künstliche…
Eine dünne Schicht aus Kunststoff mit eingelagerten Nanoröhrchen aus Kohlenstoff könnte schon bald als Unterlage für biegsame Elektronik und Displays dienen.
Nur ein einziges Molekül schaltet kontrolliert elektrischen Strom. Dieser Schritt zu milliardstel Meter kleinen Schaltkreisen der Zukunft gelang einem amerikanisch-russischen Forscherteam an der University of South Florida in Tampa.
Brennstoffzellen sollen so effizient und umweltfreundlich wie nie zuvor chemische in elektrische Energie umwandeln. Wie funktionieren die Hoffnungsträger?
Den Physik-Nobelpreis 2005 teilen sich drei Forscher – darunter auch der Deutsche Theodor W. Hänsch vom Max-Planck-Institut für Quantenoptik.
Die kontrollierte Kernfusion wird seit den 1960er Jahren für machbar gehalten. Eine lange, aufwändige Entwicklung führte zu Plänen für einen ersten Reaktor, der mehr Energie produziert als er benötigt.
Bose-Einstein-Kondensate bestehen aus vielen hunderttausend Atomen. Mit einer solchen Atomwolke kann im Prinzip ein Quantencomputer hergestellt werden.
Wafersolarzellen beherrschen heute den Markt. Doch daneben sind Dünnschichtsolarzellen Standard, und es gibt mit organischen und Mehrfach-Solarzellen noch weitere vielversprechende Bauarten.
Wenn es gelingt, das kontrollierte Schmelzen von Atomkernen auf der Erde zu realisieren und die freiwerdende Energie einzufangen, wird eine völlig neue Energiequelle erschlossen.
Katalysatoren für Brennstoffzellen sollen auf kleinstem Raum eine riesengroße Oberfläche für chemische Reaktionen bieten. Aber das macht sie für Schäden anfällig.
Hochtemperatur-Brennstoffzellen arbeiten bei Temperaturen bis zu 1000 Grad Celsius. Besonders geeignet sind solche Anlagen für kleine stationäre Kraftwerke.
Nanopartikel mit einem Durchmesser von wenigen Milliardstel Metern könnten die Basis für eine einfache Produktion von Katalysatoren für Brennstoffzellen liefern.
Metalle lassen sich mit vielfältigen Methoden bearbeiten, doch fehlt es bisher an Methoden, sie zuverlässig und in vertretbarer Rechenzeit im Computer nachzubilden.
Frank Jenko simuliert Plasmaturbulenzen, die im „Brennraum“ eines Fusionsreaktors auftreten. Auf diese Weise will er die „Lecks“ aufspüren, über die das 100 Millionen Grad heiße Gas seine Energie verliert.
Wie läßt sich das Plasma stabil einschließen, gleichzeitig aber an seinem Rand ein kontrollierter Abtransport der ungeheuren Wärmemengen erreichen?
Durch eine Strahlungskühlung wird verhindert, dass das 10 Millionen Grad heisse Plasma die Wände des Fusionsreaktors beschädigt.
Die Wechselwirkungen zwischen Fusionsplasma und den Wänden des Reaktors können sowohl die Wände als auch das Plasma zerstören.
Zwei Reaktordesigns sind für Fusionskraftwerke in Entwicklung. Wie unterscheiden sich die Funktionsprinzipien von Tokamak und Stellerator?
Unterschiedliche Methoden der Diagnostik helfen die Vorgänge im Fusionsplasma zu verstehen.
Die Quantenmechanik eröffnet neue, faszinierende Perspektiven für die Kommunikation und die Informationsverarbeitung.
Droht ein Fahrzeug bei zu schneller Kurvenfahrt auszubrechen, dann kann es durch ESP in der Frühphase durch gezieltes Abbremsen einzelner Räder wieder stabilisiert werden.
Quelle: https://www.weltderphysik.de/service/suche/
Auf unserer Website nutzen wir ausschließlich technisch notwendige Cookies. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.