Ausgewählte Filter
Gebiet
Thema
Format
Radioastronomie
Im Interview erzählt Michael Kramer von der Suche nach Gravitationswellen mithilfe von Pulsaren.
Gravitationswellen
Im Interview erzählt Jens Reiche, welche Quellen von Gravitationswellen sich mit LISA – einem geplanten Observatorium im Weltall – in Zukunft aufspüren lassen.
Allgemeine Relativitätstheorie
Wie sich Detektoren zum Nachweis von Gravitationswellen immer weiter verbesser lassen, berichtet Harald Lück im Interview.
Welche kosmischen Ereignisse die fünfzig bisher entdeckten Gravitationswellensignale hervorriefen und welche Überraschungen darunter waren, berichtet Frank Ohme im Interview.
Die Detektoren LIGO und Virgo fingen Gravitationswellen auf, die aus der Verschmelzung zweier Schwarzer Löcher mit insgesamt 142 Sonnenmassen stammen.
Mit den Gravitationswellendetektoren LIGO und Virgo haben Wissenschaftler ein überraschendes Doppelsystem aufgespürt.
Grundkräfte
In der 294. Folge des Podcasts erklärt Angnis Schmidt-May, warum die Gravitation vielleicht die mysteriöseste unter den vier fundamentalen Kräften der Natur ist.
Am 1. April startet die neue Messkampagne des Gravitationswellenobservatoriums LIGO. Dazu ein Interview mit Karsten Danzmann.
Jahresrückblicke
Auch in diesem Jahr machten Gravitationswellen wieder Schlagzeilen. Außerdem glückte die Quantenkommunikation per Satellit und der weltweit leistungsfähigste Röntgenlaser ging in Betrieb.
In der 251. Folge unseres Podcasts erklärt Karsten Danzmann vom Max-Planck-Institut für Gravitationsphysik in Hannover, warum die Entdeckung von Gravitationswellen schon bald Routine sein wird.
Universum
Astronomen beobachten erstmals sowohl mithilfe elektromagnetischer Strahlung als auch mithilfe von Gravitationswellen, wie zwei Neutronensterne kollidieren.
Preise
Der Physiknobelpreis 2017 wird für die erste direkte Beobachtung von Gravitationswellen verliehen.
LIGO
Gravitationswellensignale liefern Hinweise darauf, wie sich Doppelsysteme aus Schwarzen Löchern bilden.
Wie bei den ersten beiden Nachweisen mit LIGO entstanden die beobachteten Wellen bei der Verschmelzung von zwei Schwarzen Löchern.
Der erste direkte Nachweis von Gravitationswellen, ein überraschender Physiknobelpreis und eine Bruchlandung auf dem Mars – auch 2016 wurde es nicht langweilig.
Computersimulationen verbinden Modelle der Sternentwicklung mit Schwingungen der Raumzeit.
Die LIGO-Detektoren haben ein zweites Signal verschmelzender Schwarzer Löcher nachgewiesen, das die erste Entdeckung bestätigt.
Einige Monate nach der ersten Entdeckung von Gravitationswellen kann die Gravitationswellenastronomie schon einen zweiten Erfolg vorweisen.
Forscher lassen Goldwürfel in einem Satelliten frei fallen, um Messtechniken im Weltraum für stark niederfrequente Gravitationswellen zu testen.
Wissenschaftler konnten Verzerrungen der Raumzeit nachweisen, die Einstein bereits vor hundert Jahren vorhersagte.
Verschmelzende Schwarze Löcher durch Gravitationswellen beobachtet – Welt der Physik sprach mit den beteiligten Forschern Bruce Allen und Harald Lück darüber, wie die Entdeckung abgelaufen ist.
Über fünfzig Jahre suchten Wissenschaftler nach Gravitationswellen. Am 11. Februar 2016 verkündeten Forscher, dass sie welche entdeckt hatten.
Verzerrungen der Raumzeit versprechen neue Erkenntnisse über den Kosmos. Allerdings ist ihre Beschreibung abstrakt und die Beobachtung schwierig.
Zum Start von LISA Pathfinder erzählt Roland Haas, warum die neuen Weltraumdetektoren fündig werden müssten – und was passiert, wenn nicht.
Teilchen
In einem Bose-Einstein-Kondensat aus Rubidiumatomen trennten Physiker zwei überlagerte Wellenpakete einen halben Meter voneinander.
Astronomen beenden ihre elfjährige Untersuchung von 24 Pulsaren ohne Ergebnis, wollen aber weitersuchen.
Schwingungen der Raumzeit könnten Spuren in ultrakalten Gaswolken hinterlassen.
Pulsare sind die kompaktesten Körper im Universum. Das macht sie zu idealen Testkörpern für die Allgemeine Relativitätstheorie.
Bei der Verschmelzung Schwarzer Löcher sollten eigentlich Gravitationswellen entstehen. Doch diese lassen sich bislang nicht aufspüren.
Verschmelzen supermassereiche Schwarze Löcher, beeinflussen sie damit die Ankunftszeit von Radiopulsen auf der Erde.
Bis heute ist unklar, wie die kompakten Objekte genau aussehen. Durch den Nachweis von Gravitationswellen könnten die Theoretiker Ihre Modelle testen.
Gewaltige Sternexplosionen setzen binnen Sekunden so viel Energie frei wie alle Sterne im Weltall zusammen im selben Zeitraum. Doch noch gibt es davon nur Simulationen.
Quelle: https://www.weltderphysik.de/service/suche/
Auf unserer Website nutzen wir ausschließlich technisch notwendige Cookies. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.