Dargestellt ist eine Nervenzelle mit ihren Axonen.

Komponenten des Lebens und ihre Funktion

Die Biophysik bildet die Brücke zwischen der Physik und den Lebenswissenschaften. Sie ist eng mit der Physik Weicher Materie und Komplexer Systeme verknüpft und viele Fragestellungen sind Bestandteil der Statistischen Physik geworden. Dabei verfolgt die Biophysik mehrere Stoßrichtungen.

Die eine versucht, Methoden zu entwickeln, um die Architektur biologischer Materialien von molekularen bis makroskopischen Skalen zu untersuchen und ihre physikalischen Eigenschaften unter möglichst natürlichen Bedingungen zu messen – in „vivo“, sagt der Biologe. Entdeckungsfreudige Physiker finden eine breite Spielwiese, um mit einfachen Methoden wie optischen und magnetischen Pinzetten oder einer Glaspipette, gepaart mit einem guten Mikroskop, die physikalischen Eigenschaften der Zellen zu studieren. 

Dreidimensionale Darstellung der Struktur des Proteins GGA1.
Struktur eines Proteins

Große Maschinen hingegen sind notwendig, um die Struktur und Dynamik biologischer Materialien mittels Neutronen- und Röntgenbeugung zu erforschen. Moderne Methoden der Röntgenbeugung mit fokussierten Strahlen eröffnen dabei auch völlig neue Einblicke in die molekulare Architektur von Gewebe, Knochen oder Holz. Zudem verspricht die Entwicklung der Spallations-Neutronenquellen und des Freien Elektronenlasers neue Einsichten in die molekulare Basis des molekularen Erkennens zwischen Proteinen und DNS oder die physikalischen Grundlagen der Proteinfaltung.

Biologie als Vorbild

Eine zweite Forschungsrichtung ist die von der Biologie inspirierte Physik. Sie versucht möglichst realistische Modelle lebender Materie – wie Membranen, Gewebe oder Knochen – aufzubauen, um spezifische biologische Prozesse zu imitieren. Solche Modelle spielen eine wichtige Rolle, um etwa die Verlässlichkeit neuer physikalischer Methoden zu testen oder um nach den wesentlichen physikalischen Parametern zu suchen, welche das biologische Verhalten eines Systems bestimmen.

Parallele Untersuchungen natürlicher Systeme und von Modellen helfen auch, Bezüge zur Physik Kondensierter Materie herzustellen. Im Hintergrund steht der Gedanke, die Strategie der biologischen Selbstorganisation zur Herstellung neuartiger smarter Materialien einzusetzen. Beispiele dieses Bionik genannten Gebietes sind Materialien, die ihre Eigenschaften an wechselnde Umgebungsbedingungen anpassen können, wie selbst reinigende Oberflächen oder bruchfeste Keramiken, wie sie in Prozessen der Biomineralisierung entstehen.

Im Grenzbereich zwischen Physik und Technik sind Bemühungen angesiedelt, Methoden der Navigation in der Tierwelt zu imitieren. Beispielsweise inspirierte die Echoortung der Fledermaus die Radartechniker zum Bau des Zirp-Radars. Auch beim Bau von Robotern lässt man sich gern von der Biologie inspirieren: Zahlreiche Arbeitsgruppen versuchen, die Fähigkeit der Insekten und Salamander des Hochlaufens an Wänden zu imitieren. Roboter zum Fensterputzen wären eine passende Umsetzung des Prinzips.

Ein anderer zukunftsträchtiger Zweig der angewandten Biologischen Physik ist der Bau von Biosensoren durch den Aufbau von Enzymsystemen, Biomembranen oder Nervenzellen auf elektro-optischen Bauelementen. Ein Beispiel sind zweidimensionale Anordnungen von Punkt-Transistoren, die als Nano-Voltmeter fungieren. Hier sitzen auch zahlreiche Querverbindungen zur Nanotechnik oder Mikrooptik, denn die dort entwickelten Methoden eröffnen neue Möglichkeiten zur Messung physikalischer Eigenschaften der Zellen in natürlicher Umgebung.

Komplexe Wechselwirkungen erfassen

Dargestellt ist eine Nervenzelle mit Axonen.
Neuron

Auf fundamentalere Fragen der Biologie zielt die oft als Systembiophysik bezeichnete Erforschung der Regulation biologischer Prozesse durch das Wechselspiel zwischen biochemischen und genetischen Signalkaskaden, der dadurch bedingten Modifikation der Materialeigenschaften und der biologischen Funktion. Hier arbeiten Physiker, Mathematiker und Ingenieure miteinander. Eine besonders faszinierende Fragestellung dieser Kategorie ist die Entwicklung vom befruchteten Ei zum Embryo, oft Morphogenese genannt. Was steuert die Differenzierung der zunächst völlig identisch erscheinenden Zellen des befruchteten Eis in Neuronen oder Muskelzellen und was legt den Zeitplan der embryonalen Entwicklung fest? Ist dies alles im genetischen Code vorbestimmt oder bestimmt die Kopplung zwischen externen äußeren Kräften - wie chemischen Potentialen oder mechanischen Kräften – und dem genetischen Apparat den Prozess der Morphogenese?

Alan Turing, der geistige Vater des Programmierens, lehrte erstmals, wie raum-zeitliche Muster, etwa von Signalmolekülen, die dann die Entwicklung von Organen steuern, allein durch das Zusammenspiel chemischer Potenziale und autokatalytischer Prozesse entstehen können. Zwar ist die Entwicklung vom befruchteten Ei zum ausgewachsenen Lebewesen vor allem durch die zeitliche Folge der Gen-Expression bestimmt, doch zeigt sich auch immer mehr, dass die Zell-Zell-Erkennung und insbesondere mechanische Kräfte die Differenzierung und räumliche Organisation der Zellen steuern können. Die Aufklärung des Wechselspiels zwischen Morphogenese und der Physik der Zelle ist eine besonders reizvolle Aufgabe für Experimentatoren und Theoretiker.

Immer mehr Physiker finden außerdem Interesse an der Hirnforschung und versuchen zu verstehen, wie das Gehirn die Umwelt wahrnimmt. Ein Meilenstein auf dem Weg zur quantitativen Hirnforschung war die Entdeckung, dass optische Muster, die auf die Netzhaut der Augen projiziert werden, im visuellen Cortex als Erregungsmuster abgebildet werden. Diese Experimente brachten der Physik neuronaler Netzwerke einen enormen Aufschwung.