Hufeisenmagnet mit Eisenspänen

Was ist Magnetismus?

Der Magnetismus war schon in der Antike bekannt. Er begegnet uns in vielen Naturphänomenen und technischen Anwendungen, angefangen vom Erdmagnetfeld mit seinen Auswirkungen wie dem Polarlicht oder der Navigation mit dem Magnetkompass, über die Elektromotoren bis hin zu den Hochtemperatursupraleitern.

Hufeisenmagnet in rot und silber, an dessen beiden Enden feine Eisenspäne hängen.
Hufeisenmagnet

Man unterscheidet beim Magnetismus zwischen den physikalisch sehr verschiedenen Erscheinungsformen Dia-, Para- und Ferromagnetismus, wobei der letztgenannte nur in kondensierter Materie auftritt. Die im normalen Sprachgebrauch als „magnetisch“ bezeichneten Eigenschaften sind meist ferromagnetischer Natur. Die ferromagnetischen Eigenschaften werden im Folgenden anhand von Beispielen diskutiert.

Dem Ferromagnetismus kommt eine große technische Bedeutung zu. Zum Beispiel spielt er eine sehr wichtige Rolle in Elektrogeneratoren, Transformatoren oder Relais sowie in der Datenspeicherung und Datenverarbeitung. Hier gibt es noch enorme Möglichkeiten hinsichtlich der Energieeinsparung und der Miniaturisierung. Dies ist ein Grund, weshalb der Ferromagnetismus in den letzten Jahren wieder zu einem äußerst spannenden und aktiven Forschungsgebiet geworden ist. Der zweite Grund ist, dass in jüngster Zeit neue, teilweise auch technologisch höchst interessante physikalische Effekte wie der Riesenmagnetwiderstand oder der magnetische Zirkular-Dichroismus entdeckt wurden. Der dritte Grund ist schließlich, dass eine Reihe neuer Herstellungs- und Analyseverfahren entwickelt wurden, mit denen neue „maßgeschneiderte“ Materialien geschaffen und im Detail untersucht werden können.

Stabmagnet, der Nordpol ist rot, der Südpol blau eingefärbt. Eisenspäne um den Magneten ordnen sich entlang der Feldlinien an, die von einem Pol zum anderen verlaufen.
Magnetische Feldlinien

Wie kommt es zum Ferromagnetismus? Er hat seinen Ursprung darin, dass einzelne Atome mit nicht abgeschlossenen Elektronenschalen sich wie kleine Stabmagnete, also wie magnetische Dipole verhalten. Die „Stärke“ des atomaren Dipols bezeichnet man als magnetisches Moment des Atoms. Dieses magnetische Moment setzt sich aus zwei Beiträgen zusammen. Der eine stammt von der Eigendrehung der Elektronen, dem Spin. Der andere Beitrag wird durch die Bewegung der Elektronen um den Atomkern erzeugt, die häufig einen Bahndrehimpuls und damit auch ein magnetisches Moment aufweist. Deshalb unterscheidet man zwischen den magnetischen Spinmomenten und den magnetischen Bahnmomenten. Beide magnetischen Momente eines Atoms wechselwirken miteinander, sie sind aufgrund der Spin-Bahn-Wechselwirkung miteinander gekoppelt. Unter bestimmten Umständen koppeln auch die magnetischen Momente der einzelnen Atome miteinander und zeigen dann alle in die gleiche Richtung. Dies wird durch eine besondere Kraft, die Austauschwechselwirkung, hervorgerufen, die man mit den Gesetzen der Quantenmechanik erklären kann. Materialien, bei denen diese Ausrichtung auftritt, nennt man Ferromagnete, weil der Effekt zuerst beim Eisen (lateinisch: ferrum) beobachtet wurde. Das makroskopische magnetische Moment, das für einen Festkörper charakteristisch ist, ergibt sich aus der vektoriellen Summe aller atomaren magnetischen Momente und wird Magnetisierung genannt.

Die atomaren magnetischen Momente werden allerdings durch das komplexe Zusammenspiel der Elektronen in kondensierter Materie und die Bindungsverhältnisse im Kristall modifiziert. Während die Spins von den enormen elektrischen Feldern, die in einem Kristall herrschen, unmittelbar nichts merken, „spüren“ die elektrisch geladenen Elektronen, die einen Bahndrehimpuls haben, diese Felder auf ihrer räumlich ausgedehnten Bahn. Infolgedessen richtet sich das Bahnmoment – und über die Spin-Bahnkopplung das gesamte magnetische Moment – so aus, dass die Energie der Elektronen so gering wie möglich ist. Die magnetischen Eigenschaften eines Festkörpers hängen somit über die lokalen elektrischen Felder von seiner Kristallstruktur ab. Unter bestimmten Umständen kann es aufgrund von quantenmechanischen Effekten zu einer teilweisen Auslöschung des Bahndrehimpulses kommen. Dann ist die Spin-Bahn-Wechselwirkung sehr klein und die Spins, die nun im Wesentlichen das magnetische Moment bestimmen, orientieren sich sehr leicht in Richtung eines angelegten äußeren Feldes. Dies ist bei gewöhnlichem Weicheisen zu beobachten. Ein anderes Verhalten zeigen anisotrope Kristalle, deren physikalische Eigenschaften richtungsabhängig sind. Je stärker die Richtungsabhängigkeit oder Anisotropie ist, wie sie insbesondere an inneren und äußeren Grenzflächen, an Kristallfehlern, chemischen und strukturellen Inhomogenitäten auftritt, desto weniger vollständig wird der Bahndrehimpuls ausgelöscht. Desto stärker wird auch die Ankopplung der magnetischen Momente an das Gitter und desto größer wird die räumliche Variation der magnetischen Eigenschaften des Kristalls. Wie bei einem Stabmagneten ist dann die Magnetisierungsrichtung des Festkörpers starr festgelegt und kann nur mit sehr hohen äußeren Magnetfeldern beeinflusst werden. Solche Materialien bezeichnet man als hartmagnetisch.

Wie erwähnt, versuchen sich die atomaren magnetischen Momente im ferromagnetischen Material aufgrund ihrer direkten magnetischen Wechselwirkung kollektiv parallel zu ordnen. Dies ist aber nicht der energetisch günstigste Zustand, da dann der makroskopische Festkörper große Magnetfelder verursachen würde. Günstiger ist ein, von außen gesehen, nichtmagnetisierter Zustand, wie er sich zum Beispiel bei Weicheisen ohne Anwesenheit eines äußeren Feldes einstellt. Dies geschieht dadurch, dass sich winzige Bereiche mit jeweils gleichgerichteten magnetischen Momenten ausbilden, die man Domänen oder Weiss-Bezirke nennt. Die Magnetisierungen der einzelnen Domänen sind zueinander so orientiert, dass sie sich gegenseitig kompensieren und daraufhin die Gesamtmagnetisierung verschwindet. Die Größe der Domänen, die von wenigen Millimetern bis weit unter einen Mikrometer reicht, und ihre Struktur hängen empfindlich von der Größe der atomaren Momente und deren Ankopplung an das Kristallgefüge ab. Die Domänenstruktur ist deshalb ein wichtiger „Fingerabdruck“ des magnetischen Systems und bestimmt in hohem Maße seine makroskopischen Eigenschaften.