Ausgewählte Filter
Gebiet
Thema
Format
Beobachtende Astronomie
Im Interview berichtet Christian Straubmeier, wie das Instrument GRAVITY am Very Large Telescope seit einigen Jahren detailreiche Einblicke ins Weltall ermöglicht.
Universum
Verschmelzende Schwarze Löcher durch Gravitationswellen beobachtet – Welt der Physik sprach mit den beteiligten Forschern Bruce Allen und Harald Lück darüber, wie die Entdeckung abgelaufen ist.
Teilchen
Vom 3. bis 9. Juli findet in Valencia das größte internationale Treffen der Hochenergiephysik statt. Norbert Wermes von der Universität Bonn berichtet von dort über den Status des Higgs-Teilchens und die zukünftige Forschung am LHC.
Vor gut fünfzig Jahren schlugen Robert Brout, François Englert und Peter Higgs ein völlig neues Prinzip vor, um die Masse von Elementarteilchen zu erklären.
Allgemeine Relativitätstheorie
Wie sich Detektoren zum Nachweis von Gravitationswellen immer weiter verbesser lassen, berichtet Harald Lück im Interview.
Technik
Die Natur liefert unendlich viel Primärenergie in Form von Sonnenlicht, Winden, Wellenbewegung, Wasserkraft, Erdwärme und in nachwachsender Biomasse – eine Herausforderung an Physik und Technik, diese Energie möglichst effizient und kostengünstig…
Die sogenannte Eichsymmetrie spielt eine tragende Rolle im Standardmodell. Wissenschaftsphilosophen fragen sich, ob sie wirklich eine Eigenschaft der Natur ist oder vielleicht nur in unseren Gleichungen existiert.
Forschung – gefördert vom BMBF
Neue Physik, Dunkle Materie, Higgs-Teilchen – das alles soll der Teilchendetektor ATLAS entdecken. Dafür will ihn der neue Sprecher Karl Jakobs fit machen.
Symmetrien
Symmetrien bilden das Grundgerüst, auf dem viele physikalische Theorien beruhen. Das Standardmodell der Elementarteilchen ist dabei in seinem Kern symmetrisch aufgebaut.
Der heutigen Vorstellung von Raum und Zeit liegt ein enges Zusammenspiel von Symmetrien und fundamentalen Naturgesetzen zugrunde. Im Zentrum dieser Erkenntnis steht das sogenannte Noether-Theorem.
Materie
Wissenschaftler am Max-Planck-Institut für Metallforschung in Stuttgart haben erstmals nachgewiesen, dass Flüssigkeiten über eine fünfzählige innere Symmetrie verfügen. Dieses Ergebnis ist von grundlegender Bedeutung für das Verständnis der…
Symmetrie
Obwohl Quasikristalle bereits vor 30 Jahren entdeckt wurden, sind viele ihrer Eigenarten noch nicht verstanden. Inzwischen könnten aus einer neuen Art von Quasikristallen Materialien mit besonderen Eigenschaften entstehen.
Fraktal heißen Objekte, bei denen das Ganze seinen Bestandteilen ähnelt: Darunter fallen Bäume und Kristalle, aber auch Ansammlungen von Galaxienhaufen.
Kolloide sind im Alltag allgegenwärtig. Forscher untersuchen, wie sich die kleinen Teilchen zu symmetrischen Strukturen zusammensetzen und wie äußere Bedingungen die Geometrie dieser Strukturen bestimmen.
Astronomen wollen gewissermaßen den Schatten eines Schwarzen Lochs beobachten – das wäre der erste direkte Nachweis, dass diese Objekte existieren.
Welche Aussichten gibt es die Energieerzeugung aus erneuerbaren Quellen in der Zukunft zu steigern? Die Möglichkeiten sind unterschiedlich, das derzeit größte Ausbaupotenzial scheinen in Deutschland Windkraft und Photovoltaik zu besitzen.
Die Biomasse ist die älteste Energiequelle, die von den Menschen verwendet wird. Sie ist seit Jahrtausenden zum Heizen und Kochen in Gebrauch und war damit eine der wichtigsten Voraussetzungen für die Entwicklung unserer Zivilisation.
Mit IceCube lassen sich nicht nur hochenergetische Neutrinos aus dem Weltall aufspüren, auch über die Elementarteilchen selbst liefert der Detektor wertvolle Erkenntnisse.
Albert Einstein und die Relativitätstheorie
Energie ist gleich Masse mal Lichtgeschwindigkeit zum Quadrat – diese Formel begegnet nicht nur Physikern, sondern uns allen immer wieder.
Navigationssysteme, Uhren und Partikel in Teilchenbeschleunigern gehorchen zum Beispiel der Relativitätstheorie. Die Physik dahinter lässt sich auch ohne Mathematik nachvollziehen.
Einige Monate nach der ersten Entdeckung von Gravitationswellen kann die Gravitationswellenastronomie schon einen zweiten Erfolg vorweisen.
Mit ein bisschen Nachdenken zeigt sich, dass die Äquivalenz von Energie und Masse eine unvermeidliche Konsequenz der relativistischen Physik ist.
In den letzten Jahrzehnten gelangen Ingenieuren große Fortschritte beim Bau von Windkraftanlagen, sodass Windräder an Land bereits Leistungen von sechs Megawatt liefern.
Stauseen, Gezeitenströmungen und Flussläufe sind die effizientesten Möglichkeiten um Strom aus Wasserkraft zu erzeugen.
Photovoltaik
Das Potenzial von Solarzellen ist noch lange nicht ausgeschöpft – verbesserte Bauweisen und neue Materialien könnten den Wirkungsgrad deutlich erhöhen.
Mit dem Experiment IceCube weisen Forscher nahezu masselose Elementarteilchen aus der Milchstraße und anderen Galaxien nach.
Das Internationale Einheitensystem
Klaus von Klitzing vom MPI für Festkörperforschung in Stuttgart über mögliche neue Definitionen des Kilogramms.
Physikalische Größen
Wie lang ist ein Meter, wie schwer ein Kilogramm und wie lang eine Sekunde? Die Antwort auf diese Fragen fiel im Lauf der Geschichte oft sehr unterschiedlich aus.
In einem deutsch-schwedischen Projekt untersuchen Wissenschaftler, wie sich der Wirkungsgrad einer neuen Klasse von Solarzellen steigern lässt.
Erneuerbare Energien
Um Sonnenlicht in elektrischen Strom umzuwandeln, gibt es im Wesentlichen zwei verschiedene Wege: Photovoltaik und Solarthermie.
Wie lang ist ein Meter, wie schwer ein Kilogramm und wann ist eine Sekunde vergangen? Die Antwort auf diese Fragen fiel im Lauf der Geschichte sehr unterschiedlich aus.
Quantengravitation
Im Interview berichtet Sabine Hossenfelder von der Suche nach einer Theorie, die sowohl Effekte der Quantenphysik als auch der Allgemeinen Relativitätstheorie beschreibt.
Im Interview stellt Martin Bojowald ein neues Modell von einer fundamentalen Zeit vor, die den Takt im gesamten Universum angibt.
Spezielle Relativitätstheorie
Wie Forscher das Zwillingspaar aus dem bekannten Gedankenexperiment durch ein einziges Quantenobjekt ersetzen, erklärt Sina Loriani im Interview.
Weltweit streben Physiker nach immer genaueren Uhren – ob für die Navigation per Satellit oder die Überprüfung fundamentaler Naturgesetze.
Unter der Erdoberfläche herrschen zum Teil sehr große Temperaturen. Damit verbunden sind enorme Mengen an Wärme, die in Gesteins- und Erdschichten sowie unterirdische Wasserreservoirs gespeichert sind.
Gravitationswellen
Welche kosmischen Ereignisse die fünfzig bisher entdeckten Gravitationswellensignale hervorriefen und welche Überraschungen darunter waren, berichtet Frank Ohme im Interview.
Verzerrungen der Raumzeit versprechen neue Erkenntnisse über den Kosmos. Allerdings ist ihre Beschreibung abstrakt und die Beobachtung schwierig.
LHC-Experiment
Mit dem Fund des Higgs-Bosons sind nun alle Teilchen im Standardmodell der Teilchenphysik nachgewiesen. Es gilt also, neue Physik zu entdecken.
Pulsare sind die kompaktesten Körper im Universum. Das macht sie zu idealen Testkörpern für die Allgemeine Relativitätstheorie.
Jahresrückblicke
Auch in diesem Jahr machten Gravitationswellen wieder Schlagzeilen. Außerdem glückte die Quantenkommunikation per Satellit und der weltweit leistungsfähigste Röntgenlaser ging in Betrieb.
Der erste direkte Nachweis von Gravitationswellen, ein überraschender Physiknobelpreis und eine Bruchlandung auf dem Mars – auch 2016 wurde es nicht langweilig.
Über fünfzig Jahre suchten Wissenschaftler nach Gravitationswellen. Am 11. Februar 2016 verkündeten Forscher, dass sie welche entdeckt hatten.
Zum Start von LISA Pathfinder erzählt Roland Haas, warum die neuen Weltraumdetektoren fündig werden müssten – und was passiert, wenn nicht.
Gewaltige Sternexplosionen setzen binnen Sekunden so viel Energie frei wie alle Sterne im Weltall zusammen im selben Zeitraum. Doch noch gibt es davon nur Simulationen.
Bis heute ist unklar, wie die kompakten Objekte genau aussehen. Durch den Nachweis von Gravitationswellen könnten die Theoretiker Ihre Modelle testen.
Teilchenbeschleuniger
Im Interview berichtet Joachim Mnich von den physikalischen Durchbrüchen mit Teilchenbeschleunigern und deren Zukunft.
Elementarteilchen
Eine der großen Fragen der Teilchenphysik war lange Zeit, woher die Elementarteilchen ihre Masse bekommen. Mit dem Higgs-Teilchen lässt sich dieses Rätsel lösen.
Im Interview berichtet Andreas Hoecker von den Vorbereitungen für die dritte Betriebsphase des Large Hadron Collider.
Der LHC ist der derzeit leistungsfähigste Beschleuniger der Welt. Hier bringen Physiker Teilchen bei bisher unerreichten Energien zum Zusammenstoß.
Äquivalenzprinzip
Im Interview berichtet Claus Lämmerzahl, wie die Satellitenmission MICROSCOPE ein grundlegendes Prinzip der Physik erneut bestätigte.
Higgs-Teilchen
Am Large Hadron Collider gelang es zwei Forscherteams unabhängig voneinander, den Zerfall des Higgs-Teilchens in sogenannte Bottom-Quarks zweifelsfrei nachzuweisen.
Teilchenphysik
Nicht alle Prozesse in der Elementarteilchenphysik gehorchen fundamentalen Symmetrien. Nun haben Forscher eine weitere Ausnahme entdeckt.
Im Interview erzählt Jens Reiche, welche Quellen von Gravitationswellen sich mit LISA – einem geplanten Observatorium im Weltall – in Zukunft aufspüren lassen.
Eine neue organische Solarzelle lässt fast die Hälfte des Sonnenlichts hindurch, während sie gut zehn Prozent des einfallenden Lichts in elektrischen Strom umwandelt.
Windenergie
Simulationen zeigen, dass bodennahe Windbrecher die Stromerzeugung in Windparks steigern können.
Relativitätstheorie
Ein Forscher präsentiert nun einen neuen theoretischer Ansatz für eine Art „Warp-Antrieb“.
Am 1. April startet die neue Messkampagne des Gravitationswellenobservatoriums LIGO. Dazu ein Interview mit Karsten Danzmann.
Regenerative Energien
Neue Analysen zeigen, wie viel leiser Rotorblätter mit speziell aufgefächerten Hinterkanten sind.
Ein neues Minikraftwerk erzeugt mithilfe der Wassermoleküle in feuchter Luft hohe elektrische Spannungen – und eignet sich damit als mobile Stromquelle.
Wissenschaftler erzeugen erstmals einen Zeitkristall, der wie ein normaler Kristall periodisch angeordnet ist – nur nicht im Raum, sondern in der Zeit.
Entdecken Sie in unserer Themensammlung, in welch unterschiedlichen Phänomenen Symmetrien in der Physik eine Rolle spielen.
LIGO
Gravitationswellensignale liefern Hinweise darauf, wie sich Doppelsysteme aus Schwarzen Löchern bilden.
Wissenschaftler berichten über das enorme Potenzial und die Realisierbarkeit einer bislang ungenutzten Stromquelle – der Verdunstung von Wasser.
Durch die geschickte Wahl von Materialien steigern Wissenschaftler den Wirkungsgrad einer Tandemzelle auf 17,3 Prozent.
Neutrinos
Der Ursprung von Neutrinos aus den Tiefen des Weltalls blieb bislang rätselhaft. Forscher machten nun eine mögliche Quelle aus.
Eine neue Solarzelle ist zehnfach dünner als herkömmliche Dünnschichtzellen – erreicht dank eines raffinierten Tricks aber dennoch einen hohen Wirkungsgrad.
Gravitation
Ein System aus einem Neutronenstern und zwei Weißen Zwergen verhält sich genau wie von der Allgemeinen Relativitätstheorie vorhergesagt.
Ein neuer Prototyp verringert den Verlust von Ladungsträgern und zeigt gleichzeitig über viele Stunden einen hohen Wirkungsgrad.
Erde
Nach dreijähriger Stagnation steigen die globalen Emissionen von Kohlendioxid im laufenden Jahr 2017 wieder an, da mehr fossile Brennstoffe verfeuert werden.
Energiegewinnung
Winzige Nanofäden aus Proteinmolekülen erzeugen allein durch die Luftfeuchtigkeit genügend Energie, um Sensoren oder Leuchtdioden zu betreiben.
Aerodynamik
Einzelne Windräder liefern am meisten Strom, wenn der Wind frontal auf den Rotor trifft. Doch für größere Windparks gilt diese einfache Regel nicht mehr.
In den Morgenstunden sind Perowskitsolarzellen besonders effizient. Das zeigt ein neues Testverfahren unter realitätsnahen Umweltbedingungen.
IceCube
Wissenschaftler erhaschen einen Blick ins Erdinnere – nicht etwa durch geologische Messungen, sondern mithilfe von Daten des Neutrinoobservatoriums IceCube.
Astronomen beobachten erstmals sowohl mithilfe elektromagnetischer Strahlung als auch mithilfe von Gravitationswellen, wie zwei Neutronensterne kollidieren.
Neutrino-Observatorium IceCube weist erstmals hochenergetische Neutrinos aus den Tiefen des Alls nach.
Neutrino
Mit dem Teilchendetektor IceCube konnten Forscher zeigen, dass eine bisher nur hypothetische Art von Neutrinos wohl nicht existiert.
Sensoren des Experiments IceCube am Südpol finden keinen Zusammenhang zwischen Neutrinos aus dem All und Gammastrahlungsausbrüchen.
Preise
Der Physiknobelpreis 2017 wird für die erste direkte Beobachtung von Gravitationswellen verliehen.
Ein Frequenzvergleich von zwölf Atomuhren bestätigt, dass ihr Takt unabhängig von ihrer Position ist – wie von Albert Einsteins Theorie vorhergesagt.
Forscher legen einen neuen Wert für die Protonenmasse vor, der genauer ist als der bisherige Literaturwert – und von diesem abweicht.
Eine zusätzliche Schutzschicht ermöglicht es erstmals, mit Perowskitsolarzellen länger als fünf Jahre Solarstrom ohne große Verluste zu erzeugen.
Die Detektoren LIGO und Virgo fingen Gravitationswellen auf, die aus der Verschmelzung zweier Schwarzer Löcher mit insgesamt 142 Sonnenmassen stammen.
Preis geht an Francois Englert und Peter Higgs für die Entwicklung des Higgs-Mechanismus.
Erderwärmung
Die globale Erwärmung hat auch Folgen für das künftige Potenzial von Wind-, Solar- und Wasserkraftwerken, wobei es regional starke Unterschiede geben dürfte.
Eine neue Methode, um Perowskitschichten in Solarzellen zu kombinieren, erhöht deren Wirkungsgrad und Haltbarkeit.
Wissenschaftler verbessern Genauigkeit der gemessenen Teilchenenergie – übereinstimmend mit Prognosen des Standardmodells.
Mithilfe einer neuen elektrostatischen Reinigungsmethode lassen sich Solarmodule von abschattenden Staubschichten befreien.
An rotierenden Neutronensternen ließen sich mehrere Phänomene beobachten, die von der Allgemeinen Relativitätstheorie bislang nur theoretisch vorhergesagt wurden.
Mit den Gravitationswellendetektoren LIGO und Virgo haben Wissenschaftler ein überraschendes Doppelsystem aufgespürt.
Jahrzehntelange Beobachtungen bestätigen einen von der Allgemeinen Relativitätstheorie vorhergesagten Effekt nun auch in einem fernen Doppelsternsystem.
Schwingungen der Raumzeit könnten Spuren in ultrakalten Gaswolken hinterlassen.
Astronomen beenden ihre elfjährige Untersuchung von 24 Pulsaren ohne Ergebnis, wollen aber weitersuchen.
Die LIGO-Detektoren haben ein zweites Signal verschmelzender Schwarzer Löcher nachgewiesen, das die erste Entdeckung bestätigt.
Forscher lassen Goldwürfel in einem Satelliten frei fallen, um Messtechniken im Weltraum für stark niederfrequente Gravitationswellen zu testen.
Verschmelzen supermassereiche Schwarze Löcher, beeinflussen sie damit die Ankunftszeit von Radiopulsen auf der Erde.
In einem Bose-Einstein-Kondensat aus Rubidiumatomen trennten Physiker zwei überlagerte Wellenpakete einen halben Meter voneinander.
Wissenschaftler konnten Verzerrungen der Raumzeit nachweisen, die Einstein bereits vor hundert Jahren vorhersagte.
Computersimulationen verbinden Modelle der Sternentwicklung mit Schwingungen der Raumzeit.
Wie bei den ersten beiden Nachweisen mit LIGO entstanden die beobachteten Wellen bei der Verschmelzung von zwei Schwarzen Löchern.
Quelle: https://www.weltderphysik.de/service/suche/
Auf unserer Website nutzen wir ausschließlich technisch notwendige Cookies. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.