Ausgewählte Filter
Gebiet
Thema
Format
Elektromagnetische Strahlung
Infrarotstrahlung können wir nicht sehen, wohl aber als Wärme spüren. Ihre Anwendungen reichen von Raumheizung über Wärmebildkameras bis hin zur Infrarotastronomie.
Teilchen
Die Natur hat die chemischen Elemente, aus denen alle Sterne und Planeten, alle Organismen und auch wir Menschen bestehen, in zwei Phasen erzeugt.
Forschung – gefördert vom BMBF
Im Teilchenbeschleuniger SuperKEKB in Japan prallen Elektronen und deren Antiteilchen aufeinander, um Hinweise auf eine Physik jenseits des Standardmodells zu liefern.
Teilchenbeschleuniger
Wie Teilchenbeschleuniger in Zukunft nachhaltiger werden können, erzählt Norbert Pietralla im Interview mit Welt der Physik.
Higgs-Teilchen
Am Large Hadron Collider gelang es zwei Forscherteams unabhängig voneinander, den Zerfall des Higgs-Teilchens in sogenannte Bottom-Quarks zweifelsfrei nachzuweisen.
Teilchenphysik
Nicht alle Prozesse in der Elementarteilchenphysik gehorchen fundamentalen Symmetrien. Nun haben Forscher eine weitere Ausnahme entdeckt.
ATLAS
Das New Small Wheel soll nach der Aufrüstung des Large Hadron Collider besonders durchdringende Teilchen – sogenannte Myonen – nachweisen.
Elementarteilchen
Im Interview mit Welt der Physik spricht Dominik Stöckinger über Experimente mit Myonen und was sie für die Teilchenphysik bedeuten könnten.
Im Interview berichtet Christian Klein-Bösing von einem Effekt der Teilchenphysik, der nun erstmals am ALICE-Experiment beobachtet wurde.
Im Interview berichtet Andreas Hoecker, wie Physiker mit dem ATLAS-Experiment einem bislang ungeklärten Messergebnis nachgingen.
Das Standardmodell der Teilchenphysik beschreibt alle bekannten Elementarteilchen sowie deren Wechselwirkungen. Doch es sind noch einige Fragen offen.
Es gibt überzeugende Hinweise, dass das Standardmodell der Teilchenphysik eines Tages überholt werden muss. Die Physiker haben bereits Konzepte für die Zukunft parat.
Im Interview berichtet Joachim Mnich von den physikalischen Durchbrüchen mit Teilchenbeschleunigern und deren Zukunft.
Im Interview berichtet Peter Schleper, warum der CMS-Detektor am Large Hadron Collider die Teilchenspuren künftig noch präziser vermessen kann.
Eine der großen Fragen der Teilchenphysik war lange Zeit, woher die Elementarteilchen ihre Masse bekommen. Mit dem Higgs-Teilchen lässt sich dieses Rätsel lösen.
An Teilchenbeschleunigern stellen Physiker Bedingungen wie kurz nach dem Urknall her. Sollte es dann nicht auch gelingen, Teilchen der Dunklen Materie herzustellen?
LHC-Experiment
Mit dem Fund des Higgs-Bosons sind nun alle Teilchen im Standardmodell der Teilchenphysik nachgewiesen. Es gilt also, neue Physik zu entdecken.
Aus der Teilchenphysik könnten Antworten auf Fragen zur Dunklen Materie und Dunklen Energie kommen.
Viele Quanteneigenschaften widersprechen unserer Alltagserfahrung. Géza Giedke vom Max-Planck-Institut für Quantenoptik über die Grenze zwischen diesen beiden Welten.
Quantengravitation
Im Interview berichtet Sabine Hossenfelder von der Suche nach einer Theorie, die sowohl Effekte der Quantenphysik als auch der Allgemeinen Relativitätstheorie beschreibt.
Quantenphysik
Im Interview berichtet Caslav Brukner, wie sich mit Gedankenexperimenten wie etwa Schrödingers Katze die Gesetze der Quantenphysik erforschen lassen.
Wie Forscher erstmals Teilchen beobachtet haben, die nur aus vier Neutronen bestehen, berichtet Thomas Aumann im Interview.
Quantennetzwerke
Wie sich mit einem Quanteninternet verschiedene Quantensysteme miteinander vernetzen lassen, erklärt Josef Schupp im Interview.
Quantensensor
Im Interview mit Welt der Physik spricht Tracy Northup über einen neuen Quantensensor, mit dem sich Lichtteilchen zerstörungsfrei messen lassen.
Spezielle Relativitätstheorie
Wie Forscher das Zwillingspaar aus dem bekannten Gedankenexperiment durch ein einziges Quantenobjekt ersetzen, erklärt Sina Loriani im Interview.
Quantenfeldtheorie
Wie sich am Beispiel der Quantenphysik die Arbeitsweise von Physikern untersuchen lässt, berichtet Robert Harlander im Interview.
Physik hinter den Dingen
Geringere Emissionen sollen die Ozonschicht retten, aber es ist unklar, ab wann sich diese genau erholen wird.
Neutronensterne
Im Interview berichtet Laura Fabbietti, wie sich mit dem ALICE-Experiment instabile Teilchen untersuchen lassen, die für Neutronensterne eine wichtige Rolle spielen könnten.
ALICE
Im Interview erzählt Johanna Stachel, wie sich das Experiment ALICE während der Abschaltpause des Large Hadron Collider verändern wird.
Im Teilchenbeschleuniger LHC sollen künftig noch mehr Protonen pro Sekunde aufeinanderprallen. Um die hohen Kollisionsraten zu bewältigen, müssen auch die Detektoren – wie etwa ATLAS – aufgerüstet werden.
Die Entdeckung eines unbekannten Teilchens im Juli 2012 treibt nicht nur die Suche nach neuen Theorien voran – sie wirft auch interessante wissenschaftstheoretische und philosophische Fragestellungen auf.
Das Wissen über das Allerkleinste konnte harten Tests bisher oft standhalten, aber noch sind zahlreiche Frage offen. Der LHC wird helfen, einige davon zu beantworten.
Welchen Energieverbrauch hat der LHC? Wie schnell sind die Protonen im LHC? Kurz und prägnant finden Sie hier Antworten auf viele Fragen zum LHC.
Von Februar 2013 bis März 2015 reparierten und optimierten Wissenschaftler und Ingenieure den Beschleuniger für die zweite Laufzeit.
Wegen der hohen Strahlenbelastung müssen einzelne Detektorkomponenten am LHC immer wieder ausgetauscht werden. Physiker forschen daran, diese Teile resistenter und damit langlebiger zu machen.
ATLAS und CMS, die beiden großen Experimente am LHC, wurden in der Betriebspause auf höhere Protonenenergien und Kollisionsraten vorbereitet.
Ein technischer Unfall legte den LHC kurz nach dem Start in 2008 lahm: In den Magneten gespeicherte Energie hatte sich schlagartig entladen.
An den Experimenten ALICE, ATLAS, CMS und LHCb gehen Wissenschaftler offenen Fragen der Teilchenphysik nach.
Dunkle Materie
Im Interview spricht Manfred Lindner über die möglichen Ursachen eines überraschenden Signals in den Messdaten von XENON1T.
Die Ozonschicht in 15 bis 30 Kilometern Höhe schützt das Leben auf der Erde vor der UV-Strahlung der Sonne. Durch Schadstoffe kommt es zum Ozonabbau.
Tagsüber erscheint der wolkenlose Himmel blau, abends jedoch orange bis rot. Das Geheimnis dahinter liegt in der Art, wie das Sonnenlicht in der Atmosphäre gestreut wird.
Gammastrahlung bildet das kurzwellige Ende des elektromagnetischen Spektrums. Ihre Wellen haben die höchsten Frequenzen und die höchsten Energien.
Quantenmechanische Effekte von Atomen spielen bei vielen Phänomenen eine Rolle, etwa bei der Suprafluidität oder bei Einstein-Bose-Kondensaten.
Quantenteleportation
Im Interview mit Welt der Physik erklärt Manuel Erhard, wie sich die quantenmechanischen Eigenschaften eines Teilchens teleportieren lassen.
Antimaterie
Im Interview erzählt Masaki Hori, welches unerwartete Verhalten er und sein Team bei Antiprotonen in supraflüssigem Helium beobachtet haben.
Die Physiker bei ATLAS setzen auf den größten Teilchendetektor, der je an einem Beschleuniger gebaut wurde.
ATLAS sucht nach dem Ursprung der Teilchenmasse und neuer Physik jenseits des Standardmodells.
Aktuell sammeln Forscher Daten auf der Suche nach dem Higgs-Boson, das bisher nur in der Theorie existiert, aber eine wichtige Rolle im Standardmodell spielt.
Welt der Physik sprach mit Rolf-Dieter Heuer, der am 1. Januar 2009 den Chefposten am CERN übernahm.
Sollte es mehr als drei Raumdimensionen geben, ließen sich an Teilchenbeschleunigern womöglich winzige Schwarze Löcher erzeugen. Die Entdeckung wäre eine Sensation.
Quadrupolmagnete, CP-Verletzung oder Higgs-Teilchen, immer wieder tauchen im Zusammenhang mit dem LHC Fachbegriffe auf, die wir hier im Glossar erklären.
Physiker wollen dem Unterschied zwischen Materie und Antimaterie auf die Spur kommen. Dafür nutzen sie einen speziell entwickelten Detektor.
Mit dem LHCb-Experiment wollen Forscher herausfinden, warum das Universum hauptsächlich aus Materie und nicht aus Antimaterie besteht.
Bei CMS handelt es sich um einen Vielzweck-Detektor, mit dem die Teilchen, die bei den Kollisionen der Protonen entstehen, besonders gut und umfassend vermessen werden können.
Kompakt und massiv: Das Experiment CMS am LHC sucht nach neuer Physik und stellt unser Verständnis der Welt des Allerkleinsten auf die Probe.
Der LHC befindet sich am europäischen Teilchenphysikzentrum CERN bei Genf. Er wird die Teilchenphysik der nächsten zehn bis zwanzig Jahre prägen.
Wenn schwere Kerne zusammenstoßen, kann ein neuer Materiezustand entstehen, das Quark-Gluon-Plasma. ALICE soll einen Einblick in die Eigenschaften verschaffen.
Die großen Experimente ALICE, ATLAS, CMS und LHCb mit ihren hochhausgroßen Detektoren wurden entwickelt, um offene Fragen der Teilchenphysik zu beantworten.
Der ALICE-Detektor muss zahlreiche Teilchen nachweisen, wenn der erzeugte Urzustand der Materie, das Quark-Gluon-Plasma, wieder „ausfriert“.
1964 schlugen Wissenschaftler einen Mechanismus vor, nach dem ein bislang hypothetisches Elementarteilchen allen anderen Teilchen ihre Masse verleiht. Wird diese fast fünfzig Jahre alte Idee bald Realität?
Seit Peter Higgs und Kollegen 1964 das Higgs-Boson postulierten, sucht die Physik nach dem Teilchen.
Kerstin Tackmann vom Forschungszentrum DESY in Hamburg sucht mit ihren Kollegen im ATLAS-Experiment am LHC nach dem Higgs-Teilchen.
Thermodynamik
Im Interview erklärt Dietmar Block, wie sich die Grundlagen der Thermodynamik anhand eines Modellsystems erforschen lassen.
Neutronen
Im Interview berichtet Evgeny Epelbaum, wie er und seine Kollegen die Größe des Neutrons neu bestimmt haben.
Mikrowellenherde funktionieren ohne Kontakt zu einer Wärmequelle. Denn hier werden Wassermoleküle durch Mikrowellenstrahlung hin- und hergedreht und erzeugen durch Reibung Wärme.
Wenn T-Shirts, Haarschuppen oder Geldscheine in besonderem Licht zu leuchten beginnen, könnte es an fluoreszierenden Bestandteilen liegen.
Haben Physiker am Teilchenbeschleuniger LHC am CERN ein neues Teilchen jenseits des Standardmodells entdeckt? Peter Mättig schätzt im Interview ein, was das für die künftige Physik bedeuten könnte.
Vakuumfluktuationen sind virtuelle Teilchen, die aus dem Nichts entstehen und sofort wieder verschwinden. Forscher haben sie nun erstmals vermessen.
Nicht nur Ärzte, Archäologen oder Computerhersteller greifen häufig auf Methoden zurück, die unmittelbar auf den Erkenntnissen der Hadronen- und Kernphysik beruhen.
Tumortherapie
Im Interview erklärt Katia Parodi, wie sich geladene Teilchen in der Krebstherapie einsetzen lassen.
Kernphysik
Mit neuen theoretischen Methoden haben Physiker die Eigenschaften von 700 Atomkernen vorhergesagt und untersucht, welche Kerne existieren können.
Teilchenphysiker Peter Mättig über den auffälligen Ausreißer in den Messdaten des LHC, hinter dem kein neues Teilchen steckt, sondern statistischer Zufall.
Als präziseste Waage der Welt soll das Experiment KATRIN die genaue Masse der häufigsten Elementarteilchen im Universum bestimmen.
Ob man Polarlichter nicht nur sehen, sondern auch hören kann, war lange umstritten. In den vergangenen Jahren lieferten Studien neue Erkenntnisse über dieses Phänomen.
Mit Teilchenbeschleunigern stellen Physiker superschwere Elemente her, die schnell wieder zerfallen. Ab einer bestimmten Anzahl von Protonen und Neutronen hoffen sie auf längere Lebenszeiten.
An der neuen Anlage von FAIR wollen Atomphysiker die Eigenschaften von Antimaterie und hoch-geladenen Ionen untersuchen.
Ein Atom besteht aus einem Kern und einer Elektronenhülle. Wird mindestens eines dieser Elektronen sehr hoch angeregt, spricht man von einem Rydbergatom.
Wie ein universelles Spinmodell nahezu alle Phänomene der klassischen Physik beschreiben kann, erzählt die Quantenphysikerin Gemma De las Cuevas.
Der Physik-Nobelpreis 2015 wurde die Entdeckung der Neutrinooszillationen geehrt. Es ist bereits der vierte Nobelpreis für die Neutrinophysik in 30 Jahren.
European XFEL
Am 1. September wurde der European XFEL – der weltweit leistungsfähigste Röntgenlaser – offiziell eröffnet.
Welt der Physik sprach mit dem Physiker von der RWTH Aachen, der gemeinsam mit anderen Wissenschaftlern die Umwandlung von Myon-Neutrinos in Elektron-Neutrinos nachweisen konnte.
Im BASE-Experiment sind Forscher dem entscheidenden Unterschied zwischen Materie und Antimaterie auf der Spur.
Im ASACUSA-Projekt am CERN suchen Forscher nach Unterschieden zwischen Materie und Antimaterie.
Bei der Suche nach einer Erklärung dafür, „was die Welt im Innersten zusammenhält“, wurden nicht nur neue Strukturen der Materie, sondern auch bislang unbekannte Kräfte entdeckt.
Mit bloßen Augen ist die Welt des Allerkleinsten nicht zu erkennen. Deshalb wird mit teils gigantischen Geräten nach dem Prinzip des Streuversuchs die Natur erforscht.
In Experimenten konnten Physiker zeigen, dass manche Atomkerne spontan ihre Form ändern. Im Podcast erklärt Norbert Pietralla, wie das möglich ist.
Erhitzt man Materie immer mehr, so entsteht irgendwann ein Plasma. Dieser vierte Materiezustand ist auch für technische Anwendungen von Interesse.
Wie die Bausteine von Atomen miteinander wechselwirken, beschreibt die Quantenchromodynamik. Um die Gleichungen dahinter exakt zu lösen, wenden Physiker einen Trick an.
Symmetrien
Symmetrien bilden das Grundgerüst, auf dem viele physikalische Theorien beruhen. Das Standardmodell der Elementarteilchen ist dabei in seinem Kern symmetrisch aufgebaut.
Die sogenannte Eichsymmetrie spielt eine tragende Rolle im Standardmodell. Wissenschaftsphilosophen fragen sich, ob sie wirklich eine Eigenschaft der Natur ist oder vielleicht nur in unseren Gleichungen existiert.
Das Licht, das wir sehen können, ist nur ein kleiner Teil des sogenannten elektromagnetischen Spektrums.
Obwohl die Erfindung des Lasers im Jahr 1960 auf den Ergebnissen reiner Grundlagenforschung beruht, hat er längst seinen festen Platz in unserem Alltag.
Fliegen geladene Teilchen in einem Magnetfeld um die Kurve, so geben sie Strahlung ab. Diese Strahlung wird heute zu Forschungszwecken genutzt.
Im Mai 2017 wurde am European XFEL – dem weltweit leistungsfähigste Röntgenlaser – erstmals Laserlicht erzeugt und am 1. September wurde der Freie-Elektronen-Laser offiziell eröffnet.
Nur in extrem seltenen Fällen können Lichtteilchen miteinander kollidieren. Wissenschaftler haben dieses Phänomen kürzlich erstmals beobachtet.
Als Spiegelbild der Materie sollte Antimaterie im Urknall zu gleichen Teilen entstanden sein wie die gewohnte Materie. Doch das Universum scheint nur aus Materie zu bestehen.
Die Kernphysik erforscht Strukturen, die aus Protonen und Neutronen hervorgehen, während sich die Hadronenphysik mit den Eigenschaften von allen Partikeln beschäftigt, die sich aus Quarks zusammensetzen.
Es ist das schwerste der sechs bekannten Quarks und stellt Forscher vor viele Rätsel: Warum ist die Masse des Top-Quarks so groß? Wie kann sie präzise gemessen werden, und was bedeutet sie für das Standardmodell?
In einem alternativen Verfahren zur Abwasserreinigung werden Schadstoffe mithilfe von ionisiertem Gas abgebaut.
Anders als die lange bekannten Materieteilchen setzen sich exotische Hadronen aus mehr als drei Quarks zusammen.
Quelle: https://www.weltderphysik.de/service/suche/
Auf unserer Website nutzen wir ausschließlich technisch notwendige Cookies. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.