Ausgewählte Filter
Gebiet
Thema
Format
Licht
Im Interview berichtet Johannes Zirkelbach, wie es ihm und seinen Kollegen gelang, den Schatten von winzigen Goldteilchen abzuschwächen.
Neutronen
Im Interview berichtet Evgeny Epelbaum, wie er und seine Kollegen die Größe des Neutrons neu bestimmt haben.
Physik hinter den Dingen
Mikrowellenherde funktionieren ohne Kontakt zu einer Wärmequelle. Denn hier werden Wassermoleküle durch Mikrowellenstrahlung hin- und hergedreht und erzeugen durch Reibung Wärme.
Teilchen
Im Urknall sollten Materie und Antimaterie zu gleichen Teilen entstanden sein. Doch wo ist die Antimaterie geblieben? Gibt es im Universum womöglich ganze Galaxien aus Antimaterie?
Nicht nur Ärzte, Archäologen oder Computerhersteller greifen häufig auf Methoden zurück, die unmittelbar auf den Erkenntnissen der Hadronen- und Kernphysik beruhen.
Tumortherapie
Im Interview erklärt Katia Parodi, wie sich geladene Teilchen in der Krebstherapie einsetzen lassen.
Kernphysik
Mit neuen theoretischen Methoden haben Physiker die Eigenschaften von 700 Atomkernen vorhergesagt und untersucht, welche Kerne existieren können.
Vom 3. bis 9. Juli findet in Valencia das größte internationale Treffen der Hochenergiephysik statt. Norbert Wermes von der Universität Bonn berichtet von dort über den Status des Higgs-Teilchens und die zukünftige Forschung am LHC.
Vor gut fünfzig Jahren schlugen Robert Brout, François Englert und Peter Higgs ein völlig neues Prinzip vor, um die Masse von Elementarteilchen zu erklären.
Seit Peter Higgs und Kollegen 1964 das Higgs-Boson postulierten, sucht die Physik nach dem Teilchen.
1964 schlugen Wissenschaftler einen Mechanismus vor, nach dem ein bislang hypothetisches Elementarteilchen allen anderen Teilchen ihre Masse verleiht. Wird diese fast fünfzig Jahre alte Idee bald Realität?
Jeannine Wagner-Kuhr vom Karlruhe Institut für Technologie arbeitet am CMS-Experiment am LHC. Auch ihre Gruppe trug zum Fund des neuen Teilchens bei.
Kerstin Tackmann vom Forschungszentrum DESY in Hamburg sucht mit ihren Kollegen im ATLAS-Experiment am LHC nach dem Higgs-Teilchen.
Die Entwicklung der Quantenfeldtheorie ist eine der großen kulturellen Leistungen des 20. Jahrhunderts. Sie stellt eine Synthese der Speziellen Relativitätstheorie und der Quantentheorie dar.
Wenn T-Shirts, Haarschuppen oder Geldscheine in besonderem Licht zu leuchten beginnen, könnte es an fluoreszierenden Bestandteilen liegen.
Thermodynamik
Im Interview erklärt Dietmar Block, wie sich die Grundlagen der Thermodynamik anhand eines Modellsystems erforschen lassen.
Der Physik-Nobelpreis 2015 wurde die Entdeckung der Neutrinooszillationen geehrt. Es ist bereits der vierte Nobelpreis für die Neutrinophysik in 30 Jahren.
Welt der Physik sprach mit dem Physiker von der RWTH Aachen, der gemeinsam mit anderen Wissenschaftlern die Umwandlung von Myon-Neutrinos in Elektron-Neutrinos nachweisen konnte.
European XFEL
Am 1. September wurde der European XFEL – der weltweit leistungsfähigste Röntgenlaser – offiziell eröffnet.
Die sogenannte Eichsymmetrie spielt eine tragende Rolle im Standardmodell. Wissenschaftsphilosophen fragen sich, ob sie wirklich eine Eigenschaft der Natur ist oder vielleicht nur in unseren Gleichungen existiert.
Symmetrien
Symmetrien bilden das Grundgerüst, auf dem viele physikalische Theorien beruhen. Das Standardmodell der Elementarteilchen ist dabei in seinem Kern symmetrisch aufgebaut.
Vakuumfluktuationen sind virtuelle Teilchen, die aus dem Nichts entstehen und sofort wieder verschwinden. Forscher haben sie nun erstmals vermessen.
Haben Physiker am Teilchenbeschleuniger LHC am CERN ein neues Teilchen jenseits des Standardmodells entdeckt? Peter Mättig schätzt im Interview ein, was das für die künftige Physik bedeuten könnte.
Periodensystem
Im Interview erklärt Sigurd Hofmann, wie das Periodensystem aufgebaut ist und wie sich chemische Elemente künstlich erzeugen lassen.
Bei der Suche nach einer Erklärung dafür, „was die Welt im Innersten zusammenhält“, wurden nicht nur neue Strukturen der Materie, sondern auch bislang unbekannte Kräfte entdeckt.
Nur in extrem seltenen Fällen können Lichtteilchen miteinander kollidieren. Wissenschaftler haben dieses Phänomen kürzlich erstmals beobachtet.
Mit bloßen Augen ist die Welt des Allerkleinsten nicht zu erkennen. Deshalb wird mit teils gigantischen Geräten nach dem Prinzip des Streuversuchs die Natur erforscht.
In Experimenten konnten Physiker zeigen, dass manche Atomkerne spontan ihre Form ändern. Im Podcast erklärt Norbert Pietralla, wie das möglich ist.
Als Spiegelbild der Materie sollte Antimaterie im Urknall zu gleichen Teilen entstanden sein wie die gewohnte Materie. Doch das Universum scheint nur aus Materie zu bestehen.
Erhitzt man Materie immer mehr, so entsteht irgendwann ein Plasma. Dieser vierte Materiezustand ist auch für technische Anwendungen von Interesse.
Die Kernphysik erforscht Strukturen, die aus Protonen und Neutronen hervorgehen, während sich die Hadronenphysik mit den Eigenschaften von allen Partikeln beschäftigt, die sich aus Quarks zusammensetzen.
Wie die Bausteine von Atomen miteinander wechselwirken, beschreibt die Quantenchromodynamik. Um die Gleichungen dahinter exakt zu lösen, wenden Physiker einen Trick an.
Wie ein universelles Spinmodell nahezu alle Phänomene der klassischen Physik beschreiben kann, erzählt die Quantenphysikerin Gemma De las Cuevas.
Ob man Polarlichter nicht nur sehen, sondern auch hören kann, war lange umstritten. In den vergangenen Jahren lieferten Studien neue Erkenntnisse über dieses Phänomen.
Im BASE-Experiment sind Forscher dem entscheidenden Unterschied zwischen Materie und Antimaterie auf der Spur.
Im ASACUSA-Projekt am CERN suchen Forscher nach Unterschieden zwischen Materie und Antimaterie.
Ein Atom besteht aus einem Kern und einer Elektronenhülle. Wird mindestens eines dieser Elektronen sehr hoch angeregt, spricht man von einem Rydbergatom.
Teilchenphysik
Im Interview berichtet Christian Spiering, wie er und seine Kollegen nahezu masselose Elementarteilchen nutzen, um Informationen über das Universum zu gewinnen.
Neutrinos sind neben Photonen die häufigsten Teilchen im Universum und zugleich äußerst unscheinbar und rätselhaft.
Forschung – gefördert vom BMBF
An der im Aufbau befindlichen Extreme Light Infrastructure wollen Physiker schon bald die Struktur von Atomkernen untersuchen – genauer als je zuvor.
Am Anfang waren nur Wasserstoff und Helium. Die schweren natürlich vorkommenden Atome werden in den Sternen produziert – und im Labor geht es noch weiter.
Teilchenphysiker Peter Mättig über den auffälligen Ausreißer in den Messdaten des LHC, hinter dem kein neues Teilchen steckt, sondern statistischer Zufall.
Mit dem Experiment IceCube weisen Forscher nahezu masselose Elementarteilchen aus der Milchstraße und anderen Galaxien nach.
Obwohl die Erfindung des Lasers im Jahr 1960 auf den Ergebnissen reiner Grundlagenforschung beruht, hat er längst seinen festen Platz in unserem Alltag.
Das Licht, das wir sehen können, ist nur ein kleiner Teil des sogenannten elektromagnetischen Spektrums.
Fliegen geladene Teilchen in einem Magnetfeld um die Kurve, so geben sie Strahlung ab. Diese Strahlung wird heute zu Forschungszwecken genutzt.
Im Mai 2017 wurde am European XFEL – dem weltweit leistungsfähigste Röntgenlaser – erstmals Laserlicht erzeugt und am 1. September wurde der Freie-Elektronen-Laser offiziell eröffnet.
Elementarteilchen
Als präziseste Waage der Welt soll das Experiment KATRIN die genaue Masse der häufigsten Elementarteilchen im Universum bestimmen.
An der neuen Anlage von FAIR wollen Atomphysiker die Eigenschaften von Antimaterie und hoch-geladenen Ionen untersuchen.
Als Wissenschaftler Neutrinos aus der Sonne oder Atmosphäre zählten, zeigten sich weit weniger, als sie erwartet hatten. Die Teilchen entwischten, weil sie sich ineinander umwandeln.
Am OPERA-Experiment konnte erstmals direkt beobachtet werden, dass die Neutrinoarten sich ineinander umwandeln können und somit eine Masse besitzen müssen.
Anders als die lange bekannten Materieteilchen setzen sich exotische Hadronen aus mehr als drei Quarks zusammen.
Jörg Rossbach über die Erzeugung hochintensiver und zugleich ultrakurzer Röntgenpulse in einem Freie-Elektronen-Laser.
Thomas Pfeifer vom Max-Planck-Institut für Kernphysik nutzt Lichtpulse, die nicht einmal eine billiardstel Sekunde andauern, um Atome und Moleküle zu untersuchen.
Alle Teilchen, die sich aus Quarks zusammensetzen, bezeichnet man als Hadronen. Deren Eigenschaften geben Physikern noch immer Rätsel auf.
Unser heutiges Wissen über Quarks, Hadronen und Atomkerne hat entscheidend zu unserem modernen Weltbild beigetragen. Doch die Suche geht weiter.
Auf der Erde finden sich rund neunzig natürlich vorkommende Elemente, doch Forscher haben das Periodensystem längst um viele künstlich erzeugte Atomkerne erweitert.
Mit Teilchenbeschleunigern stellen Physiker superschwere Elemente her, die schnell wieder zerfallen. Ab einer bestimmten Anzahl von Protonen und Neutronen hoffen sie auf längere Lebenszeiten.
Trotz der vielen Erfolge weist das Standardmodell auch einige Schönheitsfehler auf. Deshalb sehen die meisten Physiker es nur als eine Stufe auf dem Weg zu einer noch umfassenderen Theorie.
GERDA geht 1400 Meter unter der Erde der Frage nach, ob Neutrinos ihre eigenen Antiteilchen sind.
Bislang gibt es keinen eindeutigen experimentellen Nachweis für den extrem seltenen neutrinolosen Doppelbetazerfall. Fände man ihn allerdings, dann wäre klar, dass Neutrinos ihre eigenen Antiteilchen sind.
Bei der Supersymmetrie geht es darum, die strikte Trennung zwischen Materie und Kräften aufzuheben. Der Preis: Die Zahl der Teilchen würde sich verdoppeln.
Präzise Messungen des Protonenradius liefern einen Wert, der stark von dem bisher geltenden abweicht. Die große Diskrepanz lässt sich bisher nicht erklären.
Vor hundert Jahren entwarf Niels Bohr sein Atommodell, das heute noch die Forschung inspiriert – etwa bei hochangeregten Rydbergatomen.
In einem alternativen Verfahren zur Abwasserreinigung werden Schadstoffe mithilfe von ionisiertem Gas abgebaut.
Am GSI Helmholtzzentrum in Darmstadt entsteht eine neue Beschleunigeranlage, die weltweit einzigartige Experimente ermöglichen wird.
Die Suche nach supersymmetrischen Teilchen blieb bislang erfolglos. Trotzdem geben Physiker die Hoffnung nicht auf, die Supersymmetrie in den kommenden Jahren doch noch zu bestätigen.
Eine zerstörungsfreie Analyse eines nahezu viertausend Jahre alten Kultobjektes bietet wichtige Einblicke in den Herstellungsprozess.
Die Natur hat die chemischen Elemente, aus denen alle Sterne und Planeten, alle Organismen und auch wir Menschen bestehen, in zwei Phasen erzeugt.
Claus Ropers von der Universität Göttingen über einen neuartigen photoelektrischen Effekt, bei dem sich die Elektronen völlig anders verhalten als beim üblichen Photoeffekt.
Im Labor erzeugen Physiker einen Feuerball mit einer Materiedichte, die sonst nur Inneren von Neutronensternen herrscht, und einer Temperatur, die hunderttausendfach höher ist als die im Zentrum der Sonne.
Das schwerste Element, das noch in nennenswerten Mengen in der Natur vorkommt, ist das Uran. Nach und nach erzeugen Wissenschaftler immer schwerere Elemente, die nur für wenige Bruchteile einer Sekunde existieren.
Es ist das schwerste der sechs bekannten Quarks und stellt Forscher vor viele Rätsel: Warum ist die Masse des Top-Quarks so groß? Wie kann sie präzise gemessen werden, und was bedeutet sie für das Standardmodell?
Der extrem intensive Röntgenstrahl von PETRA III garantiert exzellente Experimentiermöglichkeiten.
Um hochfrequente Schwingungen zu messen, nutzen Forscher ein ganz spezielles Lineal – den sogenannten Frequenzkamm.
An das energiereiche Ende des sichtbaren Lichts grenzt die Ultraviolettstrahlung. Sie ist dafür verantwortlich, dass wir in der Sonne braun werden oder T-Shirts im Discolicht leuchten.
Wissenswertes zum European XFEL auf einen Blick: Eigenschaften der Röntgenstrahlung, Standort, Betreiber, Kosten, Ereignisse
Im Hamburger Synchrotronstrahlungslabor HASYLAB arbeiten Naturwissenschaftler verschiedener Fachrichtungen sowie Industrieunternehmen an unterschiedlichen Fragestellungen.
Das nächste große Zukunftsprojekt der Teilchenphysik ist der internationale Linearcollider ILC – ein gewaltiger Linearbeschleuniger.
Beim SMART-Mikrospektroskop werden durch die innovative Korrektur von Abbildungsfehlern Auflösungen im Nanometerbereich realisiert.
Die neue Anlage FAIR wird eine nie dagewesene Vielfalt an Experimenten für hocheffiziente und zugleich kostensparende Spitzenforschung ermöglichen
Licht aus kontinuierlichen Lasern zeichnet sich durch viele Besonderheiten aus: Es ist einfarbig, verfügt über wohlgeformte Wellenzüge und ist stark gebündelt.
Atome können Licht aussenden – beispielsweise immer dann, wenn sie durch Stöße oder Licht mit zusätzlicher Energie versorgt wurden.
Welt der Physik sprach mit dem geschäftsführenden Direktor der European XFEL GmbH über Forschung, Politik und Rente.
Wie ist die Beschaffenheit der elementarsten Strukturen? Wieviele Dimensionen gibt es? Mit diesen Fragestellungen bschäftigt sich die Stringtheorie.
Röntgenstrahlung eignet sich als Werkzeug und als Sonde für Nanostrukturen.
Seit einigen Jahren ist bekannt, dass Neutrinos eine Ruhemasse besitzen. Die bisher einzige Möglichkeit der direkten Massenbestimmung ist der neutrinolose Betazerfall.
Mit dem Neutrinoexperiment SNO+ lassen sich die Eigenschaften von Neutrinos studieren. Mehr zur Neutrinophysik und zum Experiment SNO+ im zweiten Teil.
Das Standard-Modell, die rund dreißig Jahre alte Sammlung der Erkenntnisse über die Teilchenwelt galt lange als ungeschlagen. Aber ein Teilchen ist flüchtig.
Atome, Elektronen und andere Quantenteilchen verhalten sich grundlegend anders als wir es aus unserem Alltag kennen. Sie besitzen sowohl Teilchen- als auch Welleneigenschaften.
Wie entstanden die Bestandteile der Materie? Wodurch entsteht die Masse der Teilchen – oder warum sind Protonen und Neutronen schwerer als ihre Bestandteile?
Die Prozesse zur Entstehung der Elemente werfen noch immer einige Fragen auf. Zur Beantwortung sind bei FAIR Experimente mit Strahlen radioaktiver Teilchen geplant.
Der vierte Aggregatzustand wird allgemein als Plasma bezeichnet. Plasmen können sehr unterschiedlich beschaffen sein und geben teilweise noch Rätsel auf.
2002 konnten Forscher erstmals nachweisen, dass Elektronneutrinos von der Sonne als andere Neutrinotypen auf der Erde ankommen.
Das Handwerkszeug moderner Kernphysiker ist keine graue Theorie: Quarks und Gluonen haben eine Eigenschaft, die die Forscher „Farbe“ nennen.
Ein Großprojekt wie den European XFEL baut man nicht, ohne die Technologie zuvor auf Herz und Nieren geprüft zu haben.
Wie man die ganze materielle Welt auf 92 Grundbausteine zurückgeführt hat, ist eines der spannendsten Kapitel in der Geschichte der Wissenschaft.
In einem Laser marschieren die Photonen der elektromagnetischen Strahlung quasi im Gleichschritt. Kann man auch Atome dazu bewegen, im Gleichschritt zu marschieren und so eine Art Laser für Atome bauen?
Wissenschaftler erforschen mit der „Bose-Einstein-Kondensation“ ultrakalte Gaswolken, deren Atome den gleichen „Quantenzustand“ besetzen.
Gerd Fußmann vom Max-Planckinstitut für Plasmaphysik und der Berliner Humboldt-Universität erzeugt in seinem Labor Plasmabälle, die bei der Erklärung von Kugelblitzen helfen könnten.
Quelle: https://www.weltderphysik.de/service/suche/
Auf unserer Website nutzen wir ausschließlich technisch notwendige Cookies. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.