Ausgewählte Filter
Gebiet
Thema
Format
Licht
Im Interview berichtet Johannes Zirkelbach, wie es ihm und seinen Kollegen gelang, den Schatten von winzigen Goldteilchen abzuschwächen.
Physik hinter den Dingen
Lithiumionen-Akkus versorgen elektrische Geräte zuverlässig mit Strom. Gefährlich wird es, wenn sich in ihrem Inneren metallisches Lithium bildet.
Manche Brillen färben sich im Sonnenlicht selbst ein. Das liegt an Molekülen oder Kristallen, die auf UV-Strahlung reagieren.
Sie soll seidig glänzen und im Mund zart schmelzen – nicht nur die Zutaten sind entscheidend für die perfekte Schokolade, auch die Physik spielt eine wichtige Rolle.
Materie
Graphen besteht aus einer einzigen Lage wabenförmig angeordneter Kohlenstoffatome, ist aber zugfester als Stahl, fast durchsichtig, elektrisch leitend und vielfältig nutzbar.
Eine Erschütterung einer frisch geöffneten Bierflasche kann zu einer starken Schaumbildung und einem Überlaufen des Bieres führen. Dahinter stecken kleine implodierende Kohlendioxidblasen, deren Volumen explosionsartig anwächst.
Ultraschall besteht aus Schallwellen, die für den Menschen nicht hörbar sind. In der Tumorvorsorge und bei anderen Untersuchungen nimmt Ultraschall eine wichtige Rolle ein.
Für gewöhnlich mindern Beschichtungen auf optischen Linsen unerwünschte Reflexionen. Doch man geht auch neue Wege – und imitiert beispielsweise den Bauplan von Mottenaugen.
Die nussigen Sterne mit der weißen Glasur gehören sicherlich zu den wohlschmeckendsten Klassikern der Weihnachtsbäckerei. Sie werden ohne Mehl hergestellt – und halten trotzdem zusammen.
Explosionen und Implosionen von winzigen Blasen sind dafür verantwortlich, dass die Frühaufsteher in WG oder Familie alle anderen aufwecken.
In Treibhäusern lassen sich selbst im Winter noch Tomaten ziehen. Möglich wird das vor allem durch die Unterdrückung der thermischen Konvektion.
Das Rauschen des Meeres wird von den meisten Menschen als angenehm empfunden. Aber was erzeugt diese Schallwellen?
Öffnet man eine Champagner- oder Sektflasche, stört man ein thermodynamisches Gleichgewicht – mit bekannten Folgen.
Auf offenem Meer folgen die Wellen immer der Windrichtung. An der Küste beobachtet man aber Wellen, die parallel zum Ufer laufen. Warum?
Coronavirus
Im Interview erklärt Tim Salditt, wie sich menschliche Lungen nach einer COVID-19- Infektion mithilfe von Röntgenstrahlen untersuchen lassen.
Akustik
Im Interview berichtet Johann Robertsson, wie sich Objekte in einem Raum in Echtzeit vortäuschen oder verbergen lassen.
Eine dünne Wasserlage zwischen Eis und Kufe ist dafür verantwortlich, dass man auf Schlittschuhe so leicht dahingleiten kann. Aber wie entsteht diese Wasserlage?
Wenn man den Fuß in den feuchten Sand stellt, hellt sich der Sand in einem Bereich rund um den Fuß auf. Das ist ein Zeichen, dass der Sand trockener wird.
Viele Formen, doch eines haben die Eisberge meistens gemein: Die Kolosse sind strahlend weiß. Manchmal aber werden blaue Eisberge beobachtet, und es gibt sogar grüne Exemplare.
Lawinen sind eine der bedeutendsten Naturgefahren in den schneebedeckten Gebirgen der Welt – so auch im dicht besiedelten Alpenraum.
Ein genauer Blick auf unser Wärmeempfinden zeigt, dass sich unsere Haut keineswegs als Thermometer eignet.
Hier betrachten wir die physikalischen Prinzipien, die hinter einem straffen Torschuss oder einer Bananenflanke stehen.
Fußbälle können sich entlang einer gekrümmten Bahn bewegen, wenn sie nur richtig angeschnitten werden. Dahinter steckt der Magnus-Effekt und jede Menge Physik.
Ohne Luftwiderstand ergeben sich symmetrische Flugkurven und hohe Flugweiten von Schüssen. Aber Fußbälle beschreiben alles andere als schöne Wurfparabeln.
Schüsse aus großer Distanz sind durchaus zu halten, wenn der Torwart die Flugbahn des Balls gut einschätzen kann.
Aerodynamik
Ein Zusammenspiel von mehreren physikalischen Effekten macht es möglich, dass die Plastikscheiben lange und weit durch die Luft schweben können.
Weht der Wind zu stark, klappt der Regenschirm nach oben um. Ursache ist die Strömungsmechanik: Der Wind erzeugt einen Aufwärtssog.
Nach dem Umrühren von Tee bildet sich in der Mitte der Tasse ein kleines Häufchen aus Teeblättern. Schon Albert Einstein beschäftigte sich mit diesem Teetasseneffekt.
Gefriertrocknung
Wie sich Details der Gefriertrocknung mithilfe von Neutronen beobachten lassen, berichten Sebastian Gruber und Petra Först im Interview.
Thermodynamik
Im Interview erklärt Dietmar Block, wie sich die Grundlagen der Thermodynamik anhand eines Modellsystems erforschen lassen.
Sogenannte Latentwärmespeicher halten uns im Winter warm – indem sie ein Phänomen der Thermodynamik nutzen.
Im Interview berichtet Rainer Koch, wie er und seine Kollegen die Rolle von Aerosolen für die Übertragung des neuartigen Coronavirus untersuchen.
Wissenschaftler am Max-Planck-Institut für Metallforschung in Stuttgart haben erstmals nachgewiesen, dass Flüssigkeiten über eine fünfzählige innere Symmetrie verfügen. Dieses Ergebnis ist von grundlegender Bedeutung für das Verständnis der…
Symmetrie
Obwohl Quasikristalle bereits vor 30 Jahren entdeckt wurden, sind viele ihrer Eigenarten noch nicht verstanden. Inzwischen könnten aus einer neuen Art von Quasikristallen Materialien mit besonderen Eigenschaften entstehen.
Kolloide sind im Alltag allgegenwärtig. Forscher untersuchen, wie sich die kleinen Teilchen zu symmetrischen Strukturen zusammensetzen und wie äußere Bedingungen die Geometrie dieser Strukturen bestimmen.
Wer glaubt, allein die Temperatur bestimme die Farben einer Kerzenflamme, der irrt. Tatsächlich spielen auch andere physikalische und chemische Prozesse eine Rolle.
Mathematische Physiker müssen tief in die theoretische Werkzeugkiste greifen, um das Tropfen zu erklären. Die Idee der Selbstähnlichkeit hilft ihnen dabei.
Ob Treibstoff in einen Motor eingespritzt wird oder sich Wolken in der Atmosphäre bilden – viele Vorgänge lassen sich nur simulieren, wenn das Verhalten einzelner Tropfen bekannt ist.
Materialforschung
Im Interview erklärt Natalia Dubrovinskaia, wie unter hohem Druck und bei hohen Temperaturen neue Materialien mit besonderen Eigenschaften entstehen.
Im Interview berichtet Wiebke Lohstroh, wie sich mithilfe von Neutronenstrahlen die exakte chemische Struktur von Virenproteinen untersuchen lässt.
Strukturanalyse
Im Interview spricht Tobias Unruh über ein neues portables Messgerät zur Röntgenkleinwinkelstreuung, mit dem Forscher künftig nanometergroße Strukturen untersuchen wollen.
2D-Materialien
Zweidimensionale Materialien – wie beispielsweise Graphen – ermöglichen mit ihren besonderen Eigenschaften zahlreiche Anwendungen.
Forschung – gefördert vom BMBF
Im Projekt NOVA entsteht eine Onlineplattform, auf der Forscher ihre Messdaten – dreidimensionale Modelle von Insekten – gemeinsam nutzen können.
Die Antwort auf diese Frage scheint einfach: Schnee ist rutschig, deshalb rutschen Skier über den Schnee. Doch schaut man genauer hin – im wörtlichen Sinne –, so wird die Angelegenheit komplizierter.
Wie entsteht Turbulenz? Diese Frage beschäftigt Forscher schon lange. Chaostheorie und moderne Computer liefern inzwischen einige Antworten; Ursachen und Strukturen beginnender Turbulenz werden fassbar.
Wie Turbulenz entsteht, versuchen Forscher bereits seit dem Ende des 19. Jahrhunderts herauszufinden. Erst jetzt werden die Details allmählich klarer.
Thomas Gerz vom Deutschen Zentrum für Luft- und Raumfahrt in Oberpfaffenhofen über Luftwirbel, die Flugzeuge hinter sich herziehen und damit ein direktes Starten und Landen nachfolgender Maschinen verhindern.
Wissenschaftler und Wissenschaftlerinnen am Forschungszentrum ForWind erforschen den Treibstoff der Windenergie: Den Wind.
Luftfeuchtigkeit
Der Winter ist nicht nur kalt, sondern auch trocken – zumindest im warmen Zimmer. Der Grund: Die kalte Luft, die von draußen kommt, enthält kaum Wasserdampf.
Welche Methoden zum Einsatz kommen, um die Struktur des Coronavirus zu untersuchen, erklärt Dieter Willbold im Interview.
Materialwissenschaft
Im Interview erklärt Megan Cordill, warum sich speziell gefertigte Gläser biegen lassen und damit beispielsweise für faltbare Displays eignen.
Physiker und Mediziner arbeiten zusammen, um die Struktur von Herzmuskelzellen hochaufgelöst abzubilden und die Ursachen von Herzmuskelerkrankungen zu verstehen.
Ein Experiment für den nächsten Kaffeeklatsch: Der Klang, den ein Löffel an einer Tasse erzeugt, verändert sich, wenn ein Cappuccino gut umgerührt ist.
In der kalten Jahreszeit kann man bei einem Spaziergang beobachten, wie Enten über zugefrorene Seen huschen. Aber wieso frieren diese Tiere auf dem Eis nicht an?
Die meisten modernen Computer oder Handys werden heutzutage mithilfe von Touchpads oder Touchscreens bedient. Dahinter steckt eine ausgeklügelte Technik, die Hardware und Software miteinander kombiniert.
Lässt man Wasser aus einer Badewanne abfließen, entsteht über dem Abfluss ein kleiner Wirbel. Doch wie entscheidet sich, in welche Richtung sich das Wasser bewegt?
Ein großes Problem beim sicheren Eislaufen in der freien Natur sind vor allem die dünnen Bereiche, die es an einigen Stellen gibt – besonders unter Brücken.
Metalle sind extrem vielseitig. Sie leiten Strom und Wärme, sind bei Raumtemperatur entweder hochfest oder weich wie Butter. Metalle sind mit Abstand die häufigsten Elemente des Periodensystems.
Turbulenz hilft bei der Planetenentstehung, mischt im Zylinder eines Motors Kraftstoff und Luft, erhöht aber auch den Energiebedarf von Pumpen, die Öl durch Pipelines pressen.
Metamaterialien sind künstlich hergestellte Werkstoffe mit optischen, elektrischen oder magnetischen Eigenschaften, die in der Natur nicht vorkommen.
Die Erfindung des Transistors 1947 und der Kunstgriff der Dotierung brachten den Durchbruch für die Halbleiterindustrie.
Einige Materialien zeigen keinen elektrischen Widerstand mehr, wenn man sie unterhalb einer bestimmten Temperatur abkühlt. Aus vielen Bereichen der Forschung ist diese sogenannte Supraleitung nicht mehr wegzudenken.
An der Neutronenquelle HFR im französischen Grenoble erforschen Wissenschaftler weiche Materie, die in Biologie und Medizin eine wichtige Rolle spielt.
Leben
Extrem wasser- und blutabweisende Oberflächen erlauben vielfältige Anwendungen – von selbstreinigenden Solarzellen, die Licht besonders effizient sammeln, bis hin zu leistungsfähigeren Herz-Lungen-Maschinen.
Forscher untersuchen den geschickten Aufbau von Biomaterialien, vor allem die variierenden Kombinationen von brüchigen Mineralien und weichen Biopolymeren, die die Naturstoffe robust und zäh machen.
Topologische Isolatoren gelten als vielversprechende neue Materialklasse mit besonderen Eigenschaften.
Stahl ist eines der wirtschaftlich bedeutendsten Materialien überhaupt. Mithilfe neuer Forschungsansätze versuchen Forscher, neue Stähle für die Industrie zu entwickeln.
Bilder, die Jülicher Wissenschaftler aufgenommen haben, eröffnen faszinierende Einblicke in den Mikrokosmos, etwa wie Atome auf Halbleiteroberflächen Inseln bilden.
Bleiben einzelne Plätze in einem Kristall leer oder nehmen Fremdatome die Plätze ein, so verändern sich die elektrischen Eigenschaften eines Halbleiters.
1911 beobachtete der Heike Kamerlingh Onnes, dass Quecksilber bei Temperaturen unterhalb von minus 269 Grad Celsius den elektrischen Strom völlig verlustfrei leitet.
Das Antiteilchen des Elektrons – das Positron – eignet sich als nanoskopisches Sondenteilchen, mit dem sich selbst einzelne fehlende Atome in einem Kristall nachweisen lassen.
Durch geschicktes Ausnutzen der Wechselwirkungen der magnetischen Momente von Atomen gelingt es, Temperaturen bis herab zu Mikrokelvin zu erreichen.
Weniger ist häufig mehr – insbesondere wenn es um die Erzeugung kleinster Strukturen für High-Tech-Anwendungen geht. Das Verfahren der Atomlagenabscheidung ist ein gutes Beispiel dafür.
Viele interessante Eigenschaften von Festkörpern tauchen erst dann auf, wenn die ideale Kristallstruktur mit geringen Mengen bestimmter Fremdsubstanzen gestört wird.
Ein ferromagnetisches Metall ist in Bereiche unterschiedlicher Magnetisierungsrichtung aufgeteilt. Im Nanobereich herrscht eine kohärente Spinstruktur vor.
Wie sieht der Magnetspin eigentlich aus? Mit speziellen Rastertunnelmikroskopen werfen Hamburger Physiker einen Blick auf den Magnetismus auf atomarer Ebene.
Der bekannteste und meist verwendete Weg der Kühlung besteht in dem Zusammenpressen und kontrolliertem Ausdehnen von Gasen.
Multiferroika ermöglichen durch ihre einzigartigen Eigenschaften völlig neue technologische Anwendungen. Doch bis zur serienreifen Umsetzung müssen die Effekte in den Materialien noch weiter verbessert und erforscht werden.
Der sogenannte Magneto-Resistance-Effekt (TMR-Effekt) kann möglicherweise zur Herstellung neuartiger Speicherchips führen.
Magnetische Materialien sind technisch seit langem von großer Bedeutung. Dabei müssen die magnetischen Eigenschaften je nach Anwendung unterschiedlich sein.
Der Magnetismus begegnet uns in vielen Naturphänomenen und technischen Anwendungen, angefangen vom Erdmagnetfeld bis hin zu den Hochtemperatursupraleitern.
Aus der Kombination von Elektronik und Magnetismus versprechen sich Forscher Bauteile mit ganz neuen Eigenschaften. In einigen Nischen kommen sie bereits zum Einsatz.
Die Erfindung effizienter blauer LEDs ebnete den Weg zu energiesparenden weißen Lichtquellen – und brachte 2014 den Physiknobelpreis ein.
Im Auto und in vielen industriellen Produktionsprozessen verpufft eine Menge Energie als Wärme. Mit thermoelektrischen Materialien könnte die Abwärme genutzt und so weniger Energie vergeudet werden.
Am Forschungszentrum Jülich nutzen Wissenschaftler unterschiedliche Experimente mit Neutronen, um den Eigenschaften von Stoffen auf den Grund zu gehen.
Im Jahr 2018 soll ein Traum europäischer Forscher wahr werden: Im südschwedischen Lund wird die weltweit stärkste Neutronenquelle in Betrieb gehen.
Stefan Hell wurde für die Entwicklung der STED-Mikroskopie mit dem Nobelpreis für Chemie 2014 ausgezeichnet.
Optische Mikroskope erreichten vor hundert Jahren ihre größtmögliche Auflösung, wurden später aber in vielfältiger Weise weiterentwickelt.
Alle Keramiken sind spröde. Dieser Behauptung würde Dieter Brunner vom Max-Planck-Institut für Metallforschung in Stuttgart vehement widersprechen.
Um ganz neue Materialeigenschaften zu erzeugen, greifen Wissenschaftler gezielt in die Ordnung von Atomen in Metallen ein.
Wissenschaftlern gelang es, die atomare Struktur von Quantenpunkten aus dem Halbleitermaterial Indiumarsenid zu entschlüsseln.
In eindimensionalen Elektronensystemen ist die Bewegung der Elektronen auf eine Raumrichtung eingeschränkt. Bei tiefen Temperaturen verlieren die Elektronen ihre „Identität“.
Multiferroika vereinen in sich so verschiedene Eigenschaften wie Magnetismus und Ferroelektrizität. Diese Koexistenz in einem Material ermöglicht völlig neue physikalische Phänomene.
Glas begegnet uns jeden Tag in den verschiedensten Formen. Und obwohl das durchsichtige Material schon seit vielen Jahrhunderten zum Einsatz kommt, steht es noch immer im Fokus physikalischer Forschung.
Organische Leuchtdioden werden bereits seit einiger Zeit als das Licht der Zukunft gehandelt. Doch es gibt noch Forschungsbedarf.
Reibung ist definiert als der Widerstand, der bei der Bewegung zweier sich berührender Körper auftritt. Doch bislang lässt sie sich nicht exakt berechnen oder vorhersagen.
Am Forschungsreaktor FRM II in Garching durchleuchten Physiker archäologische und paläontologische Fundstücke mit Neutronen.
Neutronen dienen der Wissenschaft als eine Art Supermikroskop – mit ihrer Hilfe erhalten sie einzigartige Einblicke in die Materie. Eine besonders effiziente Methode, um Neutronen zu erzeugen, ist die Spallation.
Elektronische Bauteile werden immer kleiner. Selbst einzelne Moleküle übernehmen bereits Funktionen in Schaltkreisen: So dient beispielsweise ein einzelner Proteinkomplex als Solarzelle.
Graphen ist dünn, stabil, elektrisch leitend und fast durchsichtig. Diese Eigenschaften kommen durch die besondere Struktur des Materials zustande und sind für viele Anwendungen nutzbar.
Quelle: https://www.weltderphysik.de/service/suche/
Auf unserer Website nutzen wir ausschließlich technisch notwendige Cookies. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.