Ausgewählte Filter
Gebiet
Thema
Format
Materie
1911 beobachtete der Heike Kamerlingh Onnes, dass Quecksilber bei Temperaturen unterhalb von minus 269 Grad Celsius den elektrischen Strom völlig verlustfrei leitet.
Äquivalenzprinzip
Im Interview berichtet Claus Lämmerzahl, wie die Satellitenmission MICROSCOPE ein grundlegendes Prinzip der Physik erneut bestätigte.
Physik hinter den Dingen
Wenn Wassertröpfchen in den Wolken gefrieren, entstehen winzige Eiskristalle. Diese können zu stattlichen Schneeflocken heranwachsen – wenn die richtigen Bedingungen herrschen.
Nanotechnologie
Im Interview berichtet Carsten Ronning, wie er und sein Team ultraschnelle Prozesse in Nanodrähten untersucht haben.
Vom Antrieb einer Silvesterrakete, dem Knallen von Feuerwerkskörpern bis hin zu den leuchtenden Farben – hinter all diesen Effekten steckt eine Menge Physik.
Quantenmechanik
Im Interview erzählt Reinhard Dörner, wie ihm und seinen Kollegen die Messung der bislang kürzesten Zeitspanne gelang.
Wissenschaftler haben untersucht, wie sich an Aerosolpartikeln in der Erdatmosphäre kleine Eiskristalle bilden.
Neutronen
Im Interview mit Welt der Physik berichtet Thomas Hellweg, wie sich zukünftig Proben möglichst effizient an der Europäischen Spallationsquelle ESS untersuchen lassen.
Ein Gewitter mit Blitz und Donner erschreckt und fasziniert uns zugleich. Wodurch entstehen Gewitterblitze und wie finden sie ihren Weg zur Erde?
Materialforschung
Im Interview berichtet Wolfgang Wagermaier, warum Knochen so belastbar und bruchfest sind.
Heiß oder kalt? Das hängt von der durchschnittlichen Energie ab, mit der sich Teilchen in einem Gas, einer Flüssigkeit oder einem Festkörper bewegen.
Wettervorhersagen sind mit den Jahren immer genauer geworden. Aber mit Gewittern tun sich Meteorologen nach wie vor schwer. Wie entstehen Gewitter und warum bereiten sie Probleme?
Eis kann zahlreiche exotische Formen annehmen – nicht nur in Hochdrucklaboren, sondern auch in Diamanten oder auf Kometen.
Auch hierzulande können Eisbrocken vom Himmel fallen, die so groß wie Golfbälle sind. Für solche Hagelkörner ist ein starker, beständiger Aufwind nötig.
Im Oktober und November geht es los: Die Herbststürme brausen übers Land. Warum aber lebt das stürmische Wetter so plötzlich auf?
Der Blitz erzeugt einen Blitzkanal, in dem innerhalb von Millionstel Sekunden extrem hohe Temperaturen entstehen. Dadurch wird die Luft zu einer explosionsartigen Ausdehnung gebracht.
Schnee scheint luftig und leicht zu sein – und doch kann Schnee in größeren Mengen sogar Hochspannungsmasten knicken und Hallendächer zum Einsturz bringen.
Im Interview erklärt Matthias Sperl, warum ein Astronaut auf der Internationalen Raumstation ISS insgesamt 64 Betonproben angerührt hat.
Im Interview berichtet Natalia Dubrovinskaia, wie sich unter ultrahohem Druck neuartige Materialien erzeugen lassen.
Interview mit Norbert Schuch vom Max-Planck-Institut für Quantenoptik über den Nobelpreis für Physik 2016.
Suprafestkörper
Wie Forscher einen Suprafestkörper erstmals zweifelsfrei erzeugen konnten, berichtet Tilman Pfau im Interview mit Welt der Physik.
Röntgenstrahlung
Im Interview erzählen Peter Lee und Simon Zabler, wie an der Synchrotronquelle ESRF der menschliche Körper untersucht werden soll.
Akustik
Im Interview berichtet Johann Robertsson, wie sich Objekte in einem Raum in Echtzeit vortäuschen oder verbergen lassen.
Gefriertrocknung
Wie sich Details der Gefriertrocknung mithilfe von Neutronen beobachten lassen, berichten Sebastian Gruber und Petra Först im Interview.
Thermodynamik
Im Interview erklärt Dietmar Block, wie sich die Grundlagen der Thermodynamik anhand eines Modellsystems erforschen lassen.
Sogenannte Latentwärmespeicher halten uns im Winter warm – indem sie ein Phänomen der Thermodynamik nutzen.
Die nussigen Sterne mit der weißen Glasur gehören sicherlich zu den wohlschmeckendsten Klassikern der Weihnachtsbäckerei. Sie werden ohne Mehl hergestellt – und halten trotzdem zusammen.
Eine Erschütterung einer frisch geöffneten Bierflasche kann zu einer starken Schaumbildung und einem Überlaufen des Bieres führen. Dahinter stecken kleine implodierende Kohlendioxidblasen, deren Volumen explosionsartig anwächst.
Explosionen und Implosionen von winzigen Blasen sind dafür verantwortlich, dass die Frühaufsteher in WG oder Familie alle anderen aufwecken.
Fußbälle können sich entlang einer gekrümmten Bahn bewegen, wenn sie nur richtig angeschnitten werden. Dahinter steckt der Magnus-Effekt und jede Menge Physik.
Ultraschall besteht aus Schallwellen, die für den Menschen nicht hörbar sind. In der Tumorvorsorge und bei anderen Untersuchungen nimmt Ultraschall eine wichtige Rolle ein.
In Treibhäusern lassen sich selbst im Winter noch Tomaten ziehen. Möglich wird das vor allem durch die Unterdrückung der thermischen Konvektion.
Topologische Isolatoren gelten als vielversprechende neue Materialklasse mit besonderen Eigenschaften.
Coronavirus
Welche Methoden zum Einsatz kommen, um die Struktur des Coronavirus zu untersuchen, erklärt Dieter Willbold im Interview.
Materialwissenschaft
Im Interview erklärt Megan Cordill, warum sich speziell gefertigte Gläser biegen lassen und damit beispielsweise für faltbare Displays eignen.
Ein Experiment für den nächsten Kaffeeklatsch: Der Klang, den ein Löffel an einer Tasse erzeugt, verändert sich, wenn ein Cappuccino gut umgerührt ist.
In der kalten Jahreszeit kann man bei einem Spaziergang beobachten, wie Enten über zugefrorene Seen huschen. Aber wieso frieren diese Tiere auf dem Eis nicht an?
Die meisten modernen Computer oder Handys werden heutzutage mithilfe von Touchpads oder Touchscreens bedient. Dahinter steckt eine ausgeklügelte Technik, die Hardware und Software miteinander kombiniert.
Lässt man Wasser aus einer Badewanne abfließen, entsteht über dem Abfluss ein kleiner Wirbel. Doch wie entscheidet sich, in welche Richtung sich das Wasser bewegt?
Ein großes Problem beim sicheren Eislaufen in der freien Natur sind vor allem die dünnen Bereiche, die es an einigen Stellen gibt – besonders unter Brücken.
Leben
Extrem wasser- und blutabweisende Oberflächen erlauben vielfältige Anwendungen – von selbstreinigenden Solarzellen, die Licht besonders effizient sammeln, bis hin zu leistungsfähigeren Herz-Lungen-Maschinen.
Forscher untersuchen den geschickten Aufbau von Biomaterialien, vor allem die variierenden Kombinationen von brüchigen Mineralien und weichen Biopolymeren, die die Naturstoffe robust und zäh machen.
Die Antwort auf diese Frage scheint einfach: Schnee ist rutschig, deshalb rutschen Skier über den Schnee. Doch schaut man genauer hin – im wörtlichen Sinne –, so wird die Angelegenheit komplizierter.
Wer glaubt, allein die Temperatur bestimme die Farben einer Kerzenflamme, der irrt. Tatsächlich spielen auch andere physikalische und chemische Prozesse eine Rolle.
Wie entsteht Turbulenz? Diese Frage beschäftigt Forscher schon lange. Chaostheorie und moderne Computer liefern inzwischen einige Antworten; Ursachen und Strukturen beginnender Turbulenz werden fassbar.
Wie Turbulenz entsteht, versuchen Forscher bereits seit dem Ende des 19. Jahrhunderts herauszufinden. Erst jetzt werden die Details allmählich klarer.
Thomas Gerz vom Deutschen Zentrum für Luft- und Raumfahrt in Oberpfaffenhofen über Luftwirbel, die Flugzeuge hinter sich herziehen und damit ein direktes Starten und Landen nachfolgender Maschinen verhindern.
Wissenschaftler und Wissenschaftlerinnen am Forschungszentrum ForWind erforschen den Treibstoff der Windenergie: Den Wind.
Ob Treibstoff in einen Motor eingespritzt wird oder sich Wolken in der Atmosphäre bilden – viele Vorgänge lassen sich nur simulieren, wenn das Verhalten einzelner Tropfen bekannt ist.
Mathematische Physiker müssen tief in die theoretische Werkzeugkiste greifen, um das Tropfen zu erklären. Die Idee der Selbstähnlichkeit hilft ihnen dabei.
Symmetrie
Kolloide sind im Alltag allgegenwärtig. Forscher untersuchen, wie sich die kleinen Teilchen zu symmetrischen Strukturen zusammensetzen und wie äußere Bedingungen die Geometrie dieser Strukturen bestimmen.
Obwohl Quasikristalle bereits vor 30 Jahren entdeckt wurden, sind viele ihrer Eigenarten noch nicht verstanden. Inzwischen könnten aus einer neuen Art von Quasikristallen Materialien mit besonderen Eigenschaften entstehen.
Wissenschaftler am Max-Planck-Institut für Metallforschung in Stuttgart haben erstmals nachgewiesen, dass Flüssigkeiten über eine fünfzählige innere Symmetrie verfügen. Dieses Ergebnis ist von grundlegender Bedeutung für das Verständnis der…
Turbulenz hilft bei der Planetenentstehung, mischt im Zylinder eines Motors Kraftstoff und Luft, erhöht aber auch den Energiebedarf von Pumpen, die Öl durch Pipelines pressen.
Die Erfindung des Transistors 1947 und der Kunstgriff der Dotierung brachten den Durchbruch für die Halbleiterindustrie.
Metalle sind extrem vielseitig. Sie leiten Strom und Wärme, sind bei Raumtemperatur entweder hochfest oder weich wie Butter. Metalle sind mit Abstand die häufigsten Elemente des Periodensystems.
Metamaterialien sind künstlich hergestellte Werkstoffe mit optischen, elektrischen oder magnetischen Eigenschaften, die in der Natur nicht vorkommen.
Graphen ist dünn, stabil, elektrisch leitend und fast durchsichtig. Diese Eigenschaften kommen durch die besondere Struktur des Materials zustande und sind für viele Anwendungen nutzbar.
Ein ferromagnetisches Metall ist in Bereiche unterschiedlicher Magnetisierungsrichtung aufgeteilt. Im Nanobereich herrscht eine kohärente Spinstruktur vor.
Wie sieht der Magnetspin eigentlich aus? Mit speziellen Rastertunnelmikroskopen werfen Hamburger Physiker einen Blick auf den Magnetismus auf atomarer Ebene.
Magnetische Materialien sind technisch seit langem von großer Bedeutung. Dabei müssen die magnetischen Eigenschaften je nach Anwendung unterschiedlich sein.
Der Magnetismus begegnet uns in vielen Naturphänomenen und technischen Anwendungen, angefangen vom Erdmagnetfeld bis hin zu den Hochtemperatursupraleitern.
Der sogenannte Magneto-Resistance-Effekt (TMR-Effekt) kann möglicherweise zur Herstellung neuartiger Speicherchips führen.
Organische Leuchtdioden werden bereits seit einiger Zeit als das Licht der Zukunft gehandelt. Doch es gibt noch Forschungsbedarf.
Alle Keramiken sind spröde. Dieser Behauptung würde Dieter Brunner vom Max-Planck-Institut für Metallforschung in Stuttgart vehement widersprechen.
Um ganz neue Materialeigenschaften zu erzeugen, greifen Wissenschaftler gezielt in die Ordnung von Atomen in Metallen ein.
Multiferroika vereinen in sich so verschiedene Eigenschaften wie Magnetismus und Ferroelektrizität. Diese Koexistenz in einem Material ermöglicht völlig neue physikalische Phänomene.
Glas begegnet uns jeden Tag in den verschiedensten Formen. Und obwohl das durchsichtige Material schon seit vielen Jahrhunderten zum Einsatz kommt, steht es noch immer im Fokus physikalischer Forschung.
Reibung ist definiert als der Widerstand, der bei der Bewegung zweier sich berührender Körper auftritt. Doch bislang lässt sie sich nicht exakt berechnen oder vorhersagen.
Das Antiteilchen des Elektrons – das Positron – eignet sich als nanoskopisches Sondenteilchen, mit dem sich selbst einzelne fehlende Atome in einem Kristall nachweisen lassen.
Durch geschicktes Ausnutzen der Wechselwirkungen der magnetischen Momente von Atomen gelingt es, Temperaturen bis herab zu Mikrokelvin zu erreichen.
Der bekannteste und meist verwendete Weg der Kühlung besteht in dem Zusammenpressen und kontrolliertem Ausdehnen von Gasen.
Multiferroika ermöglichen durch ihre einzigartigen Eigenschaften völlig neue technologische Anwendungen. Doch bis zur serienreifen Umsetzung müssen die Effekte in den Materialien noch weiter verbessert und erforscht werden.
Viele interessante Eigenschaften von Festkörpern tauchen erst dann auf, wenn die ideale Kristallstruktur mit geringen Mengen bestimmter Fremdsubstanzen gestört wird.
Wissenschaftlern gelang es, die atomare Struktur von Quantenpunkten aus dem Halbleitermaterial Indiumarsenid zu entschlüsseln.
In eindimensionalen Elektronensystemen ist die Bewegung der Elektronen auf eine Raumrichtung eingeschränkt. Bei tiefen Temperaturen verlieren die Elektronen ihre „Identität“.
Weniger ist häufig mehr – insbesondere wenn es um die Erzeugung kleinster Strukturen für High-Tech-Anwendungen geht. Das Verfahren der Atomlagenabscheidung ist ein gutes Beispiel dafür.
Im Jahr 2018 soll ein Traum europäischer Forscher wahr werden: Im südschwedischen Lund wird die weltweit stärkste Neutronenquelle in Betrieb gehen.
Die Erfindung effizienter blauer LEDs ebnete den Weg zu energiesparenden weißen Lichtquellen – und brachte 2014 den Physiknobelpreis ein.
Aus der Kombination von Elektronik und Magnetismus versprechen sich Forscher Bauteile mit ganz neuen Eigenschaften. In einigen Nischen kommen sie bereits zum Einsatz.
Bilder, die Jülicher Wissenschaftler aufgenommen haben, eröffnen faszinierende Einblicke in den Mikrokosmos, etwa wie Atome auf Halbleiteroberflächen Inseln bilden.
Bleiben einzelne Plätze in einem Kristall leer oder nehmen Fremdatome die Plätze ein, so verändern sich die elektrischen Eigenschaften eines Halbleiters.
Am Forschungszentrum Jülich nutzen Wissenschaftler unterschiedliche Experimente mit Neutronen, um den Eigenschaften von Stoffen auf den Grund zu gehen.
Mit Wirbeln in magnetischen Materialien lassen sich Daten bald vielleicht nicht nur platzsparender, sondern auch deutlich energieeffizienter speichern und verarbeiten.
Die Bewahrung des kulturellen Erbes hat in den letzten Jahren einen zunehmenden Stellenwert in Politik und Gesellschaft erfahren – sogar Neutronen helfen dabei.
Die TU München betreibt in Garching die Forschungs-Neutronenquelle Heinz Maier-Leibnitz, kurz FRM II. Sie gilt als modernste und vielfältigste Neutronenquelle der Welt.
Die Nanotechnologie befasst sich mit Details, die nur Millionstel Millimeter groß sind. Rastersondenmikroskope gewähren uns einen Einblick in diese Welt.
Das Rastertunnelmikroskop eignet sich nur zur Mikroskopie von elektrisch leitfähigen Materialien, wie Metallen und Halbleitern.
Um die Geheimnisse der Stoffe zu enthüllen, müssen große Maschinen und Geräte gebaut werden, die mit den Methoden der Streuung von Licht oder Teilchen arbeiten.
Am Forschungsreaktor FRM II in Garching durchleuchten Physiker archäologische und paläontologische Fundstücke mit Neutronen.
Stefan Hell wurde für die Entwicklung der STED-Mikroskopie mit dem Nobelpreis für Chemie 2014 ausgezeichnet.
Neutronen dienen der Wissenschaft als eine Art Supermikroskop – mit ihrer Hilfe erhalten sie einzigartige Einblicke in die Materie. Eine besonders effiziente Methode, um Neutronen zu erzeugen, ist die Spallation.
Stahl ist eines der wirtschaftlich bedeutendsten Materialien überhaupt. Mithilfe neuer Forschungsansätze versuchen Forscher, neue Stähle für die Industrie zu entwickeln.
Im Auto und in vielen industriellen Produktionsprozessen verpufft eine Menge Energie als Wärme. Mit thermoelektrischen Materialien könnte die Abwärme genutzt und so weniger Energie vergeudet werden.
Die Spintronik hat so wichtige Entdeckungen wie den Riesenmagnetowiderstands-Effekt und das spin-abhängige quantenmechanische Tunneln von Elektronen hervorgebracht.
Optische Mikroskope erreichten vor hundert Jahren ihre größtmögliche Auflösung, wurden später aber in vielfältiger Weise weiterentwickelt.
Elektronische Bauteile werden immer kleiner. Selbst einzelne Moleküle übernehmen bereits Funktionen in Schaltkreisen: So dient beispielsweise ein einzelner Proteinkomplex als Solarzelle.
Sie soll seidig glänzen und im Mund zart schmelzen – nicht nur die Zutaten sind entscheidend für die perfekte Schokolade, auch die Physik spielt eine wichtige Rolle.
Graphen besteht aus einer einzigen Lage wabenförmig angeordneter Kohlenstoffatome, ist aber zugfester als Stahl, fast durchsichtig, elektrisch leitend und vielfältig nutzbar.
Im Interview erklärt Natalia Dubrovinskaia, wie unter hohem Druck und bei hohen Temperaturen neue Materialien mit besonderen Eigenschaften entstehen.
Quelle: https://www.weltderphysik.de/service/suche/
Auf unserer Website nutzen wir ausschließlich technisch notwendige Cookies. Weitere Informationen erhalten Sie in unserer Datenschutzerklärung.