Ausgewählte Filter
Gebiet
Thema
Format
Dieser Forschungsbereich umfasst unter anderem Analysen der Struktur und Dynamik von Festkörpern sowie den Aufbau und das Verhalten von Makromolekülen.
Materie
Graphen besteht aus einer einzigen Lage wabenförmig angeordneter Kohlenstoffatome, ist aber zugfester als Stahl, fast durchsichtig, elektrisch leitend und vielfältig nutzbar.
Die Erfindung des Transistors 1947 und der Kunstgriff der Dotierung brachten den Durchbruch für die Halbleiterindustrie.
Einige Materialien zeigen keinen elektrischen Widerstand mehr, wenn man sie unterhalb einer bestimmten Temperatur abkühlt. Aus vielen Bereichen der Forschung ist diese sogenannte Supraleitung nicht mehr wegzudenken.
Turbulenz hilft bei der Planetenentstehung, mischt im Zylinder eines Motors Kraftstoff und Luft, erhöht aber auch den Energiebedarf von Pumpen, die Öl durch Pipelines pressen.
Metalle sind extrem vielseitig. Sie leiten Strom und Wärme, sind bei Raumtemperatur entweder hochfest oder weich wie Butter. Metalle sind mit Abstand die häufigsten Elemente des Periodensystems.
Metamaterialien sind künstlich hergestellte Werkstoffe mit optischen, elektrischen oder magnetischen Eigenschaften, die in der Natur nicht vorkommen.
Biologen vertrauen seit langem auf den Blick durch Lichtmikroskope. Physiker entwickeln immer bessere Methoden, um das Auflösungsvermögen weiter zu erhöhen.
Ein nicht unerheblicher Teil der von uns genutzten Energie geht in Form von Wärme verloren. Thermoelektrische Materialien könnten diese Verlustwärme in Strom umwandeln und dadurch wieder nutzbare Energie erzeugen.
In der Spintronik zeigen Elektronen, dass sie für weit mehr verwendet werden können als nur für Elektronik, nämlich wenn ihr Spin genutzt wird.
Der Magnetismus bildet unter anderem die Grundlage von Festplattenspeichern in der Computertechnik und macht Untersuchungen mit Kernspintomografie möglich.
Da sich sowohl die anorganische als auch die organische Materie aus den gleichen Bausteinen zusammensetzt, treffen in der Nanowelt die Fachbereiche Physik, Biologie und Chemie aufeinander.
Ob metallischer Glanz, Rost oder Reibung – die obersten Atomschichten einer Substanz bestimmen wesentlich, wie sie aussieht, wie sie reagiert und wozu sie alles nützlich sein kann.
Rastersondenmikroskope gewähren uns einen Einblick in die Welt der Atome und Moleküle. Sie können dort zwar auch nicht „sehen“, aber sie tasten sich durch den Nanokosmos.
Neutronen werden verwendet, um Struktur und Eigenschaften von Materialien aufzuklären.
Festkörper und Flüssigkeiten, Gase und Plasmen, Halb- und Supraleiter, Gläser und Magnete – die Festkörperphysik versucht Antworten zu finden, wie es zu dieser Fülle an Materieformen kommt.
Bis heute wurde das Elektronenmikroskop stetig weiter entwickelt und ist ein wertvolles Instrument zur Untersuchung der Materie.
Im Jahr 2018 soll ein Traum europäischer Forscher wahr werden: Im südschwedischen Lund wird die weltweit stärkste Neutronenquelle in Betrieb gehen.
1911 beobachtete der Heike Kamerlingh Onnes, dass Quecksilber bei Temperaturen unterhalb von minus 269 Grad Celsius den elektrischen Strom völlig verlustfrei leitet.
Am Forschungsreaktor FRM II in Garching durchleuchten Physiker archäologische und paläontologische Fundstücke mit Neutronen.
Das Antiteilchen des Elektrons – das Positron – eignet sich als nanoskopisches Sondenteilchen, mit dem sich selbst einzelne fehlende Atome in einem Kristall nachweisen lassen.
Durch geschicktes Ausnutzen der Wechselwirkungen der magnetischen Momente von Atomen gelingt es, Temperaturen bis herab zu Mikrokelvin zu erreichen.
Weniger ist häufig mehr – insbesondere wenn es um die Erzeugung kleinster Strukturen für High-Tech-Anwendungen geht. Das Verfahren der Atomlagenabscheidung ist ein gutes Beispiel dafür.
Viele interessante Eigenschaften von Festkörpern tauchen erst dann auf, wenn die ideale Kristallstruktur mit geringen Mengen bestimmter Fremdsubstanzen gestört wird.
Der bekannteste und meist verwendete Weg der Kühlung besteht in dem Zusammenpressen und kontrolliertem Ausdehnen von Gasen.
Multiferroika ermöglichen durch ihre einzigartigen Eigenschaften völlig neue technologische Anwendungen. Doch bis zur serienreifen Umsetzung müssen die Effekte in den Materialien noch weiter verbessert und erforscht werden.
Wie sieht der Magnetspin eigentlich aus? Mit speziellen Rastertunnelmikroskopen werfen Hamburger Physiker einen Blick auf den Magnetismus auf atomarer Ebene.
Magnetische Materialien sind technisch seit langem von großer Bedeutung. Dabei müssen die magnetischen Eigenschaften je nach Anwendung unterschiedlich sein.
Der sogenannte Magneto-Resistance-Effekt (TMR-Effekt) kann möglicherweise zur Herstellung neuartiger Speicherchips führen.
Ein ferromagnetisches Metall ist in Bereiche unterschiedlicher Magnetisierungsrichtung aufgeteilt. Im Nanobereich herrscht eine kohärente Spinstruktur vor.
In eindimensionalen Elektronensystemen ist die Bewegung der Elektronen auf eine Raumrichtung eingeschränkt. Bei tiefen Temperaturen verlieren die Elektronen ihre „Identität“.
Wissenschaftlern gelang es, die atomare Struktur von Quantenpunkten aus dem Halbleitermaterial Indiumarsenid zu entschlüsseln.
Der Magnetismus begegnet uns in vielen Naturphänomenen und technischen Anwendungen, angefangen vom Erdmagnetfeld bis hin zu den Hochtemperatursupraleitern.
Topologische Isolatoren gelten als vielversprechende neue Materialklasse mit besonderen Eigenschaften.
Graphen ist dünn, stabil, elektrisch leitend und fast durchsichtig. Diese Eigenschaften kommen durch die besondere Struktur des Materials zustande und sind für viele Anwendungen nutzbar.
Alle Keramiken sind spröde. Dieser Behauptung würde Dieter Brunner vom Max-Planck-Institut für Metallforschung in Stuttgart vehement widersprechen.
Um ganz neue Materialeigenschaften zu erzeugen, greifen Wissenschaftler gezielt in die Ordnung von Atomen in Metallen ein.
Organische Leuchtdioden werden bereits seit einiger Zeit als das Licht der Zukunft gehandelt. Doch es gibt noch Forschungsbedarf.
Glas begegnet uns jeden Tag in den verschiedensten Formen. Und obwohl das durchsichtige Material schon seit vielen Jahrhunderten zum Einsatz kommt, steht es noch immer im Fokus physikalischer Forschung.
Reibung ist definiert als der Widerstand, der bei der Bewegung zweier sich berührender Körper auftritt. Doch bislang lässt sie sich nicht exakt berechnen oder vorhersagen.
Multiferroika vereinen in sich so verschiedene Eigenschaften wie Magnetismus und Ferroelektrizität. Diese Koexistenz in einem Material ermöglicht völlig neue physikalische Phänomene.
Die Erfindung effizienter blauer LEDs ebnete den Weg zu energiesparenden weißen Lichtquellen – und brachte 2014 den Physiknobelpreis ein.
Aus der Kombination von Elektronik und Magnetismus versprechen sich Forscher Bauteile mit ganz neuen Eigenschaften. In einigen Nischen kommen sie bereits zum Einsatz.
Stefan Hell wurde für die Entwicklung der STED-Mikroskopie mit dem Nobelpreis für Chemie 2014 ausgezeichnet.
Stahl ist eines der wirtschaftlich bedeutendsten Materialien überhaupt. Mithilfe neuer Forschungsansätze versuchen Forscher, neue Stähle für die Industrie zu entwickeln.
Neutronen dienen der Wissenschaft als eine Art Supermikroskop – mit ihrer Hilfe erhalten sie einzigartige Einblicke in die Materie. Eine besonders effiziente Methode, um Neutronen zu erzeugen, ist die Spallation.
Die Spintronik hat so wichtige Entdeckungen wie den Riesenmagnetowiderstands-Effekt und das spin-abhängige quantenmechanische Tunneln von Elektronen hervorgebracht.
Optische Mikroskope erreichten vor hundert Jahren ihre größtmögliche Auflösung, wurden später aber in vielfältiger Weise weiterentwickelt.
Elektronische Bauteile werden immer kleiner. Selbst einzelne Moleküle übernehmen bereits Funktionen in Schaltkreisen: So dient beispielsweise ein einzelner Proteinkomplex als Solarzelle.
Im Auto und in vielen industriellen Produktionsprozessen verpufft eine Menge Energie als Wärme. Mit thermoelektrischen Materialien könnte die Abwärme genutzt und so weniger Energie vergeudet werden.
Bilder, die Jülicher Wissenschaftler aufgenommen haben, eröffnen faszinierende Einblicke in den Mikrokosmos, etwa wie Atome auf Halbleiteroberflächen Inseln bilden.
Bleiben einzelne Plätze in einem Kristall leer oder nehmen Fremdatome die Plätze ein, so verändern sich die elektrischen Eigenschaften eines Halbleiters.
Am Forschungszentrum Jülich nutzen Wissenschaftler unterschiedliche Experimente mit Neutronen, um den Eigenschaften von Stoffen auf den Grund zu gehen.
Die TU München betreibt in Garching die Forschungs-Neutronenquelle Heinz Maier-Leibnitz, kurz FRM II. Sie gilt als modernste und vielfältigste Neutronenquelle der Welt.
Mit Wirbeln in magnetischen Materialien lassen sich Daten bald vielleicht nicht nur platzsparender, sondern auch deutlich energieeffizienter speichern und verarbeiten.
Die Nanotechnologie befasst sich mit Details, die nur Millionstel Millimeter groß sind. Rastersondenmikroskope gewähren uns einen Einblick in diese Welt.
Das Rastertunnelmikroskop eignet sich nur zur Mikroskopie von elektrisch leitfähigen Materialien, wie Metallen und Halbleitern.
Um die Geheimnisse der Stoffe zu enthüllen, müssen große Maschinen und Geräte gebaut werden, die mit den Methoden der Streuung von Licht oder Teilchen arbeiten.
Die Bewahrung des kulturellen Erbes hat in den letzten Jahren einen zunehmenden Stellenwert in Politik und Gesellschaft erfahren – sogar Neutronen helfen dabei.
Am Institut Laue-Langevin im französischen Grenoble analysieren Forscher aus aller Welt ihre Proben mithilfe von Neutronen.
Physik hinter den Dingen
Heiß oder kalt? Das hängt von der durchschnittlichen Energie ab, mit der sich Teilchen in einem Gas, einer Flüssigkeit oder einem Festkörper bewegen.
Ultraschall besteht aus Schallwellen, die für den Menschen nicht hörbar sind. In der Tumorvorsorge und bei anderen Untersuchungen nimmt Ultraschall eine wichtige Rolle ein.
Auch wenn die Sandmuster den Seegang des Meeres widerspiegeln, ist ihre Entstehung doch einem gänzlich anderen physikalischen Prinzip geschuldet.
Öffnet man eine Champagner- oder Sektflasche, stört man ein thermodynamisches Gleichgewicht – mit bekannten Folgen.
Eine Erschütterung einer frisch geöffneten Bierflasche kann zu einer starken Schaumbildung und einem Überlaufen des Bieres führen. Dahinter stecken kleine implodierende Kohlendioxidblasen, deren Volumen explosionsartig anwächst.
Im Oktober und November geht es los: Die Herbststürme brausen übers Land. Warum aber lebt das stürmische Wetter so plötzlich auf?
Ein genauer Blick auf die Bestandteile der Milch zeigt, wie dessen typische Farbe zustande kommt.
Das Rauschen des Meeres wird von den meisten Menschen als angenehm empfunden. Aber was erzeugt diese Schallwellen?
Auf offenem Meer folgen die Wellen immer der Windrichtung. An der Küste beobachtet man aber Wellen, die parallel zum Ufer laufen. Warum?
Eis kann zahlreiche exotische Formen annehmen – nicht nur in Hochdrucklaboren, sondern auch in Diamanten oder auf Kometen.
Wettervorhersagen sind mit den Jahren immer genauer geworden. Aber mit Gewittern tun sich Meteorologen nach wie vor schwer. Wie entstehen Gewitter und warum bereiten sie Probleme?
Der Blitz erzeugt einen Blitzkanal, in dem innerhalb von Millionstel Sekunden extrem hohe Temperaturen entstehen. Dadurch wird die Luft zu einer explosionsartigen Ausdehnung gebracht.
Ein Gewitter mit Blitz und Donner erschreckt und fasziniert uns zugleich. Wodurch entstehen Gewitterblitze und wie finden sie ihren Weg zur Erde?
Interview mit Norbert Schuch vom Max-Planck-Institut für Quantenoptik über den Nobelpreis für Physik 2016.
Fußbälle können sich entlang einer gekrümmten Bahn bewegen, wenn sie nur richtig angeschnitten werden. Dahinter steckt der Magnus-Effekt und jede Menge Physik.
Ein Experiment für den nächsten Kaffeeklatsch: Der Klang, den ein Löffel an einer Tasse erzeugt, verändert sich, wenn ein Cappuccino gut umgerührt ist.
Die nussigen Sterne mit der weißen Glasur gehören sicherlich zu den wohlschmeckendsten Klassikern der Weihnachtsbäckerei. Sie werden ohne Mehl hergestellt – und halten trotzdem zusammen.
Lässt man Wasser aus einer Badewanne abfließen, entsteht über dem Abfluss ein kleiner Wirbel. Doch wie entscheidet sich, in welche Richtung sich das Wasser bewegt?
Explosionen und Implosionen von winzigen Blasen sind dafür verantwortlich, dass die Frühaufsteher in WG oder Familie alle anderen aufwecken.
Eine dünne Wasserlage zwischen Eis und Kufe ist dafür verantwortlich, dass man auf Schlittschuhe so leicht dahingleiten kann. Aber wie entsteht diese Wasserlage?
Die meisten modernen Computer oder Handys werden heutzutage mithilfe von Touchpads oder Touchscreens bedient. Dahinter steckt eine ausgeklügelte Technik, die Hardware und Software miteinander kombiniert.
Lawinen sind eine der bedeutendsten Naturgefahren in den schneebedeckten Gebirgen der Welt – so auch im dicht besiedelten Alpenraum.
Ein großes Problem beim sicheren Eislaufen in der freien Natur sind vor allem die dünnen Bereiche, die es an einigen Stellen gibt – besonders unter Brücken.
Viele Formen, doch eines haben die Eisberge meistens gemein: Die Kolosse sind strahlend weiß. Manchmal aber werden blaue Eisberge beobachtet, und es gibt sogar grüne Exemplare.
Schnee scheint luftig und leicht zu sein – und doch kann Schnee in größeren Mengen sogar Hochspannungsmasten knicken und Hallendächer zum Einsturz bringen.
Wenn man den Fuß in den feuchten Sand stellt, hellt sich der Sand in einem Bereich rund um den Fuß auf. Das ist ein Zeichen, dass der Sand trockener wird.
In der kalten Jahreszeit kann man bei einem Spaziergang beobachten, wie Enten über zugefrorene Seen huschen. Aber wieso frieren diese Tiere auf dem Eis nicht an?
Weht der Wind zu stark, klappt der Regenschirm nach oben um. Ursache ist die Strömungsmechanik: Der Wind erzeugt einen Aufwärtssog.
Nach dem Umrühren von Tee bildet sich in der Mitte der Tasse ein kleines Häufchen aus Teeblättern. Schon Albert Einstein beschäftigte sich mit diesem Teetasseneffekt.
Aerodynamik
Ein Zusammenspiel von mehreren physikalischen Effekten macht es möglich, dass die Plastikscheiben lange und weit durch die Luft schweben können.
Die Luftfeuchtigkeit ist nicht die einzige Größe, um den Wasserdampfgehalt der Luft zu charakterisieren. Ein alternatives Maß dafür ist der Taupunkt.
Sie soll seidig glänzen und im Mund zart schmelzen – nicht nur die Zutaten sind entscheidend für die perfekte Schokolade, auch die Physik spielt eine wichtige Rolle.
Forschung – gefördert vom BMBF
Im Interview erzählt Reinhard Dörner, wie ihm und seinen Kollegen die Messung der bislang kürzesten Zeitspanne gelang.
Licht
Im Interview berichtet Johannes Zirkelbach, wie es ihm und seinen Kollegen gelang, den Schatten von winzigen Goldteilchen abzuschwächen.
Gefriertrocknung
Wie sich Details der Gefriertrocknung mithilfe von Neutronen beobachten lassen, berichten Sebastian Gruber und Petra Först im Interview.
Thermodynamik
Im Interview erklärt Dietmar Block, wie sich die Grundlagen der Thermodynamik anhand eines Modellsystems erforschen lassen.
Coronavirus
Im Interview berichtet Wiebke Lohstroh, wie sich mithilfe von Neutronenstrahlen die exakte chemische Struktur von Virenproteinen untersuchen lässt.
Materialforschung
Im Interview erklärt Natalia Dubrovinskaia, wie unter hohem Druck und bei hohen Temperaturen neue Materialien mit besonderen Eigenschaften entstehen.
An der Neutronenquelle HFR im französischen Grenoble erforschen Wissenschaftler weiche Materie, die in Biologie und Medizin eine wichtige Rolle spielt.
Leben
Extrem wasser- und blutabweisende Oberflächen erlauben vielfältige Anwendungen – von selbstreinigenden Solarzellen, die Licht besonders effizient sammeln, bis hin zu leistungsfähigeren Herz-Lungen-Maschinen.
Quelle: https://www.weltderphysik.de/service/suche/
Auch wir setzen Cookies ein, um unsere Website zu optimieren. Die Daten werden ausschließlich anonymisiert erfasst und nicht für Werbezwecke genutzt. Weitere Informationen und Einstellmöglichkeiten finden Sie in unserer Datenschutzerklärung.