FAIR: 65 Millionen Euro für Speicherring

Jülicher Forscher beteiligen sich am Großprojekt zur Forschung mit Antiprotonen

Jülich/Bonn - Das Forschungszentrum Jülich erhält rund 65 Millionen Euro für seine Beteiligung am internationalen Projekt FAIR (Facility for Antiproton and Ion Research). Die Jülicher Wissenschaftler werden mit diesen Fördergeldern des Bundesministeriums für Bildung und Forschung (BMBF) den Bau des Hochenergie-Speicherrings HESR übernehmen und sich damit als ein wesentlicher Partner an der Forschung mit Antiprotonen an dem Großprojekt beteiligen, das in Darmstadt entsteht.

"Wir freuen uns, dass das Forschungszentrum Jülich einen maßgeblichen Anteil an diesem weltweit einzigartigen wissenschaftlichen Projekt hat, das grundlegende Antworten zur Entstehung und zum Aufbau der Materie geben wird", erklärte Beatrix Vierkorn-Rudolph vom BMBF. "Dies ist der offizielle Startschuss für die Beteiligung Jülichs bei FAIR und ein wichtiges Signal für die Jülicher Wissenschaft sowie eine Bestätigung unserer Strategie in der Beschleuniger- und Hadronenphysik", freute sich der Vorstandsvorsitzende des Forschungszentrums Jülich, Achim Bachem. Sebastian M. Schmidt, Vorstandsmitglied des Forschungszentrums, ergänzte: "Nach rund zehn Jahren Vorbereitungsarbeiten können wir nun an die konkrete Umsetzung gehen. Wir freuen uns darüber, dieses physikalische Großprojekt mit unseren nationalen und internationalen Partnern beginnen zu können."

Teilchenphysiker aus aller Welt gründeten im Oktober letzten Jahres die internationale Gesellschaft FAIR in Darmstadt. FAIR wird voraussichtlich ab 2018 hochenergetische schwere Ionen und Antiprotonen für die Grundlagenforschung zur Verfügung stellen, die Anlage wird Forschern in der ganzen Welt offenstehen.

Der 575 Meter lange Beschleunigerring HESR wird Antiprotonen mit einer Energie von bis zu 15 Gigaelektronenvolt (GeV) speichern und für die weltweit präzisesten Experimente bereitstellen. Mit Experimenten am HESR werden elementare Bausteine der Materie untersucht, die Quarks und Gluonen. Ihre Wechselwirkungen bestimmen viele Prozesse, von Aufbau und Masse der Protonen über die Frühphase des Universums bis hin zu kosmischen Prozessen in Supernovae und Quasaren. Aus der fortschrittlichen Technologie, die zum Betrieb von Teilchenbeschleunigern notwendig ist, können aber auch alltagsrelevante Anwendungen entstehen. Einige Beispiele aus den vergangenen Jahren sind medizinische Geräte mit CCD-Sensor, Krebstherapien mittels Teilchenstrahlen und Methoden für nanostrukturierte Werkstoffe.