Neuer Hochleistungslaser in Darmstadt

Wissenschaftler haben an der GSI nun die weltweit einzigartige Möglichkeit, Laserstrahlen und Ionenstrahlen, die in der bestehenden Beschleunigeranlage produziert werden, in Experimenten miteinander zu kombinieren. In der vergangenen Woche führten Wissenschaftler der GSI und der Technischen Universität Darmstadt erfolgreich das erste Experiment durch.

Phelix-Experimentierkammer
Phelix-Experimentierkammer

Darmstadt - Der neue Laser "Phelix" (Petawatt High-Energy Laser for Ion Experiments) gehört nach Angaben der GSI zu den stärksten Lasern weltweit. Er kann Laserpulse mit Energien bis zu 1000 Joule und Laserpulse mit Leistungen bis zu einem halben Petawatt liefern. Er ist in einem eigenen Gebäude von der Größe eines zweistöckigen Wohnhauses komplett unter Reinraumatmosphäre untergebracht. Der Laserstrahl, der einen Durchmesser von 30 cm besitzt, wird mit Spezial-Spiegeln zum Experimentierplatz am Ionenbeschleuniger geleitet und dort auf einen Punkt verdichtet. Nur etwa alle 1 ½ Stunden kann ein Laserpuls erzeugt werden.

Die Bauzeit betrug etwa acht Jahre. "Wir sind froh, dass wir alle technischen Problemen gemeistert haben und es nun geschafft haben, das erste Experiment durchzuführen, in dem wir Hochenergie-Laserstrahlen mit Ionenstrahlen kombinieren konnten. Wir freuen uns auf die vielen spannenden Experimente in den kommenden Jahren", sagt Professor Klaus Witte, der Phelix-Projektleiter an der GSI.

Ziel der Experimente mit Phelix ist es, Materie zu erforschen, wenn sie als so genanntes Plasma vorliegt. Plasma ist ein Aggregatzustand neben den bekannteren Aggregatzuständen fest, flüssig und gasförmig, die Materie auf der Erde annehmen kann. Dabei ist die Atomhülle ganz oder teilweise von den Atomkernen getrennt. Dies ist unter Extrembedingungen möglich, wie sie in Sternen oder im Inneren des Jupiter vorherrschen. Auch aus dem Alltag sind uns weniger energiereiche Plasmen bekannt, wie zum Beispiel eine Kerzenflamme oder Blitze bei einem Gewitter.

Im jüngsten Experiment beschossen Wissenschaftler der GSI und der TU Darmstadt mit dem Laser eine Materialprobe aus Kohlenstoff, sodass sich der Kohlenstoff in ein Plasma umwandelte. Bruchteile von Sekunden später beschossen sie das Plasma mit Ionenstrahlen aus Schwefel. Die Analyse der dabei auftretenden Reaktionen erlaubt es, die Eigenschaften des Plasmas zu erforschen. Auch das Umgekehrte ist in Zukunft geplant: die Erzeugung eines Plasma mit Ionenstrahlen und die Analyse mit Laserstrahlen.